...
首页> 外文期刊>Stochastic environmental research and risk assessment >A novel general methodology for studying and remedying finite precision error with application in Kalman filtering
【24h】

A novel general methodology for studying and remedying finite precision error with application in Kalman filtering

机译:A novel general methodology for studying and remedying finite precision error with application in Kalman filtering

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Least squares (LS) techniques, like Kalman filtering, are widely used in environmental science and engineering. In this paper, a new general approach is introduced for the study of the generation, propagation and accumulation of the quantization error in any algorithm. This methodology employs a number of fundamental propositions demonstrating the way the four operations addition, multiplication, division and subtraction, influence quantization error generation and transmission. Using these, one can obtain knowledge of the exact number of erroneous digits with which all quantities of any algorithm are computed at each step of it. This methodology offers understanding of the actual cause of the generation and propagation of finite precision error in any computational scheme. Application of this approach to all Kalman type LS algorithms shows that not all their formulas are equivalent concerning the quantization error effects. More specifically, few generate the greater amount of quantization error. Finally, a stabilization procedure, applicable to all Kalman type algorithms, is introduced that renders all these algorithms very robust.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号