首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Pyrylium salts. Part V. 5,6,12,13-Tetrahydro-5,13 : 6,12-bisepithiodibenzoa,fcyclodecene-7,14-diones by dimerisation of 2-benzothiopyrylium-4-olate
【24h】

Pyrylium salts. Part V. 5,6,12,13-Tetrahydro-5,13 : 6,12-bisepithiodibenzoa,fcyclodecene-7,14-diones by dimerisation of 2-benzothiopyrylium-4-olate

机译:吡喃盐。第五部分 5,6,12,13-四氢-5,13:6,12-双硫代二苯并a,f环癸烯-7,14-二酮,由2-苯并硫代吡喃-4-醇酸盐二聚化

获取原文
获取外文期刊封面目录资料

摘要

13 66 J.C.S. Perkin IPyrylium Salts. Part V.l 5,6,12,13-Tetrahydro-5,13 : 6,12-bisepithiodi-benzo a, f cyclodecene -7,14-d iones by D i rner isat io n of 2- Benzot h iopyry I -ium-4-olateBy Kjell Undheim * and Sigurd Baklien, Department of Chemistry, University of Oslo, Oslo 3, Norway2 - Be nzot h i o pyr y I i u m - 4- o la te, s y n t h esised fro m i sot h i o c h ro ma n - 4 - one a nd i so I at ed as the perch 1 or i c acidsalt, is readily dimerised to give stereoisomeric 5.1 3 :6,12-bisepithiodibenzoa,f cyclodecenes ; the syn-isomeris the major product. Spectroscopic data for both isomers and X-ray data for the syn-form are discussed.THREE-MEMBERED rings containing one heteroatomreact with 1,3-dipolarophiles through an ylide inter-mediate.2.3 When such a three-membered ring is fusedonto another ring of medium size, thermal conrotatoryring opening is not permitted by the geometry of thesystem, whereas disrotatory photochemical opening isa l l o ~ e d .~ In fused indeno-systems, however, both theformally disallowed and the allowed opening of thethree-membered ring occur, as shown by 1,3-dipolar1 Part IV, K. Undheim and B. P. Nilsen, Acta Chem. Scand., B,in the press.J. H. Hall and R. Huisgen, Chem. Comnz., 1971, 1187.3 H. Hamberger and R. Huisgen, Chem. Comm., 1971, 1190.J. W. Lown and K. Matsumoto, J . Org. Chem., 1971, 36,J. W. Lown and K. Matsumoto, Canad. J . Chem., 1971,1405.49, 3446.addition reaction^.^-^ In the absence of a suitabledipolarophile, dimerisation may take The firstisomerisation reactions of this type were reported forphenyl-substituted indanone epoxides : 'y9 these (1 ;X = 0) are valence isomers of 2-benzopyrylium-4-olate (3; X = 0).The 2,3-diphenyl epoxide (1; X =0) exists in an equilibrium with the mesoionic system(3); the equilibrium position is much in favour of theepoxide i s ~ m e r . ~ ? ~ Presumably the reactive carbo nyl654.86, 3814.1964, 1847.1966, $8, 4942,6 D. L. Garling and N. H. Cromwell, J . Org. Chem., 1973, 38,7 E. F. Ullman and J. E. Milks, J . Amer. Chem. Soc., 1964,8 H. E. Zimmerman and R. D. Simkin, Tetrahedron Letters,@ E. F. Ullman and W. A. Henderson, J . Amer. Chem. Soc.1975 1367ylide (2) may arise from either of these forms. Therelated isomerisation of isoquinolinium-4-olates (3 ; X =NR) to la,6a-dihydroindeno1,2-bazirin-6(1H)-ones (1 ;X = NR) does not appear to have been reported;isomerisation in the opposite direction, however, con-stitutes a ready synthesis of isoquinolinium-4-olates.10The azomethine ylide structure (2) explains the 1,3-dipolar character demonstrated by cycloadditions of N-methylisoquinolinium-4-olate ; u 1,3-dipolar characterhas also been demonstrated for pyridinium-3-01ates.l~Pyrylium-3-olate and its thio-analogue, however, havenot been available for such studies.0( 2 )SCHEME 10-( 3 )The simple pyrylium- and thiopyrylium-3-olates areexpected to be unstable, as reflected in the low stabilitiesof the pyrylium and thiopyrylium cations.13 Wedescribe here a study of 2-benzothiopyrylium-4-olate(6). Synthesis of this compound from i t s valenceisomeric episulphide (1; X = S) by analogy to thephotolytic isomerisation of the aza-analogues to theisoquinolinium-4-olates lo was not attempted in view ofthe instability of activated episulphides ; the synthesiswas in fact carried out according to Scheme 2.0-0 OH( 4 )t( 7 1SCHEME 2(Benzy1thio)acetic acid (4) was cyclised to isothio-chroman-4-one (5) by means of phosphorus pent0~ide.l~Pyryliuiii cations are readily generated from 4H-pyransthrough hydride abstraction by triphenylmethyl per-chlorate; l5 the trityl reagent was also successful in thepresent case and 2-benzothiopyrylium-4-olate, as itsperchloric acid salt, could be recrystallised from aceticacid. Preparation in the presence of acetic anhydrideand acetic acid gave the 4-acetoxythiopyrylium cation(7) in excellent yield.The acetoxy-derivative (7) insolution in trifluoroacetic acid (TFA) was completelydeacetylated after a few hours at room temperature, andthe mesoionic compound (6) was again obtained as theperchloric acid salt. The n.m.r. spectra of the thio-pyrylium salts in CD,CN are characterised by low fieldabsorptions, especially for H-1 which resonates as adoublet at 7 -0.5 for (6) and at -0.9 for the acetate (7) ;in isoquinolinium analogues examined the chemicalshift for H-1 is in the range 7 0.4-1.1.10316The thiopyrylium salt (6) is readily attacked by waterand is thus less aromatically stabilised than its aza-analogues.Addition of triethylamine to a solution of theperchloric acid salt of (6) in acetonitrile and tetrahydro-furan resulted in a deeper yellowish-green colouring ;the colour had faded after a few min. The colouring wassustained for a longer period at -60 "C, but the samereaction took place as discussed below. Addition of theperchloric acid salt of (6) to a solution of potassium t-butoxide gave the same major product but the totalproduct was more heterogeneous. U.V. absorptionsrecorded during the addition of triethylamine showedthe disappearance of the long-wave 390 nm band of theperchloric acid salt (6) with the transient appearance oftwo new bands at 355 and 436 nm; A,,,. for the finallong-wave band was ca. 365 nm.The final spectrum wasrelated to that of isothiochroman-4-one recorded inacetunitrile. The first shift in the U.V. maxima isattributed to the phenol-phenolate shift due to gener-ation of the mesoionic system (6). The final product wascomposed of two substances without salt-like charac-teristics. These were separated by column chromato-graphy on silica gel; both showed a molecular ion atm/e 324 and had related mass spectral fragmentationpatterns, this implied that dimerisation of the thiopyry-liumolate (6) had occurred. The isomer ratio was 1 : 7.The same product was obtained in attempted cyclo-addition reactions with the usual 1,3-dipolarophilesduring addition of the triethylamine ; no cycloadductswere formed. Dimerisation in the analogous isoquino-linium series has not been reported.The equilibriummixture of I ,3-diphenyl-2-benzopyrylium-4-olate (3 ;X = 0) and its epoxide (1) , however, is readily dimerisedin such a way that the carbonyl group in one epoxidemolecule (1) adds as a 1,3-dipolarophile to the carbonylylide (2) .7 Spectroscopic data exclude such a dimeris-ation in the present case. Photolysis of the 2-methyl-3-phenyl epoxide (1) has yielded 6 of a dimeric material.The structure suggested from spectroscopic evidenceis analogous to structure (9) described below for thethiopyrylium dimer; no further stereochemistry wasdiscussed. The spectroscopic data for the thiopyryliumdimers suggest that both have the same carbon skeleton.They both have a strong carbonyl absorption band atlo I?.E. Hansen and K. Undheim, J.C.S. Perkin I, 1975, 305.l1 N. Denis, A. R. Katritzky, and Y. Takeuchi, J.C.S. Perkin I,l2 A. R. Katritzky and 3'. Takeuchi, J . Chem. Soc. ( C ) , 1971,l3 J. Degani, R. Fochi, and C. Vincenzi, Boll. sci. Fac. Claim.14 C. C . Price, M. Hori, T. Parasaran, and M. Polk, J . Amer.l6 K. Undheim and E. T. IZlstensen, A d a Chem. Scaszd., 1973,l6 K. Undheim and P. E. Hansen, Chemica Scripta, 1973, 3,1972, 2054.s74. 27, 1385.i d Bologna, 1965, 23, 21.Chem. SOL, 1963, 85, 2278.1131368 J.C.S. Perkin I1670 cm-l (KBr). The major isomer has U.V. bands(MeCN) at 292 and 371 nm and the minor isomer bandsat 298, 350, and 365 nm. The n.m.r. spectra containsignals for two coupled methine protons besides thearomatic protons.The data are consistent with face-to-face dimerisation. A double-layer transition state inwhich the carbonyl groups lie above each other on thesame side is unlikely because of directional polarisationin the monomers which results in dipolar or electrostaticrepulsion. With the carbonyl groups arranged onopposite sides, however, attractive forces exist betweenthe charge centres; the syn- (a) and the anti- (b) arrange-ments lead to the respective dimers shown (Scheme 3).0 3: 0constant is 12 Hz. The methine protons show furthersecondary coupling (2 Hz). When syn-(9) is dissolved in2H6dimethyl sulphoxide and dilute sodium deuteriumoxide is added, the protons next to the carbonyl groupsare rapidly exchanged ; the benzyl methine protons arealso easily exchanged.After exchange of the twoprotons next to the carbonyl groups (H-6 and -13) thesinglet due to remaining two benzyl protons appearedbroad, presumably because of long-range aromaticcouplings. The secondary splitting of 2 Hz disappearedon deuteriation and is therefore ascribed to couplingbetween the methine protons on either side of the sulphurbridge. A secondary coupling of about 2 Hz is also seen0( b )SCHEME 30anti-( 9 1From the n.m.r. spectra (see later) the major isomerwas assigned the syn-structure, and this was confirmed byX-ray analysis.l7 The molecule has a two-fold axis ofsymmetry. The faces are planar within 0.1 with thesulphur atom 1 A out of the plane. The planes aretilted; the internal angle is 113" between the planes andthe plane through the carbon atoms of the dithian ring.The distance between a carbonyl carbon (C-7) and theclosest non-bonded aromatic carbon atom (C-4a) is2.763 A.The shortest interplanar distance betweenaromatic carbon atoms (C4a and -1la) is 3.242 A; thenormal stacking distance for aromatic rings is 3.40 A incrystals.18 In syn-(9) the benzene rings are displacedsideways relative to one another, which brings the x-electrons of the carbonyl groups near to the x-electrons ofthe benzene rings. The short interplanar distanceimplies repulsion between the x-systems ; this is reflectedin the C(5)-C(6) and C(12)-C(13) bond lengths (1.577 A),which are significantly longer than the normal carbon-carbon single bond; the carbon-sulphur bonds, however,have normal values (1.811 and 1.815 A).17 The sulphuratoms can be regarded as part of a 1,4-dithian ring lockedin the boat conformation.Accordingly the torsionangle between the vicinal protons is small; the experi-mental value is 10.7 amp; 30,17 and the vicinal couplingin the spectrum of the anti-isomer, which is rigidly lockedin a chair conformation of the 1,4-dithian ring; thevicinal coupling constant of the methine protons was 5.5Hz. In both isomers the methine protons on either sideof the sulphur atom are nearly synperiplanar ; this maybe the reason for the magnitude of the observed coupling.The resonances for the aromatic protons in the syn-isomer occur at higher field (z 2.6-3.1) than in the anti-isomer (7 1.8-2.7).The aromatic protons in isothio-chroman-4-one (5) resonate in the region "c 2.0-2.8.The major shift difference occurs in the case of thearomatic proton ortho to the carbonyl group, which isresponsible for the lowest-field aromatic signal in anti-(9) and (5). In the syn-isomer this proton lies above abenzene ring and is thus in the aromatic shielding zonewhich effectively counteracts the anisotropy effect f romthe carbonyl group.The mass spectra of the dimers contain the same majorfragments but differ in relative intensities. The basepeak is at m/e 134 (c8H6s) and the relative intensities ofthe molecular ion are 15 and 30 for the syn- and anti-isomer, respectively. The spectrum from the perchloric17 P.Groth, Acta Chem. Scand., A , in the press.l* D. J. Cram and J. M. Cram, Accounts Chenz. Res., 1971,4, 2041975 1369acid salt of the thiopyryliumolate (6) shows dominatingpyrolytic dimerisation before evaporation and thespectrum resembles that of the anti-isomer in relativefragment intensities. Direct evaporation of the species(6) appears to be insignificant. This observationillustrates the difference in stabilisation by sulphur andnitrogen atoms of cationic aromatic systems : simpleisoquinolinium-4-olates and pyridinium-3-olates arereadily evaporated in the mass spectrometer withoutisomerisation.1Q~ 2OThe benzene rings in the dirner (9) are planar, not bentas in many highly strained cyclophane systems.15 Thestructure is rigid because of the sulphur cross-bondingpreventing isomer interconversion ; the anti-isomer isprobably for steric reasons thermodynamically the morestable. The syn-isomer bears some resemblance to thesymmetrical sandwich-like 2,2orthocyclophane formedby intramolecular photodimerisation of 1,3-bis-( a-naphthy1)propane; 21 the isomer formed is the one whichhas maximum overlap of the x-orbitals in the transitionstate.21 Preferential endo-adduct formation in 1,3-dipolar cycloadditions and in Diels-Alder reactions hasbeen interpreted in terms of secondary orbital overlapin the transition state.6 Similar arguments may beadvanced for the preferential formation of the syn-isomer of (9), although the dimerisation may be a two-step process via an intermediate zwitterion-like structure(8).Another possibility also exists for stereochemicaldirection in the dimerisation of (6) : differential polaris-ation in the benzene rings, which is likely because of thecharge separation in the hetero-rings, may result inweak dipolar attraction between the benzene rings whenarranged as in (a). The stereochemistry of the finalproduct is already determined by the first carbon-carbon bond formation in the absence of epimerisation.That the dimerisation reaction is fast and selective isshown by the failure of concerted 1,3-dipolar cyclo-additions with all the dipolarophiles tried.EXPERIMENTAL3I.m.r. spectra were recorded on a Varian A-60 A orA-100 instrument, U.V. spectra on a Cary 14 spectrophoto-meter, and mass spectra on an A.E.1.-902 spectrometer.Isothiochroman-4-one (5), prepared as described,14 hadand 2.3-2.8 (3H, aromatic) ; A,, (MeCN) 248 (log E 3.99),291 (3.23), and 344nm (2.36); m/e 164 (63, M+), 118 (loo),90 (59), and 89 (17).4-Hydroxy-2-benzothiopyrylium Perchlorate (6) .-(a) Iso-thiochroman-4-one (3.28 g, 0.020 mol) was dissolved inanhydrous acetonitrile (20 ml) and triphenylmethyl per-chlorate 22 (6.50 g, 0.019 mol) was added.The reactionmixture was heated at 55-60 "C for 10 min. The cold'F (CD,),SO 6.4 (2 x H-3), 6.0 (2 x H-1), 2.0-2.2 (H-5),precipitated greenish perchlorate collected. After washingwith anhydrous ether and methylene chloride the materialwas recrystallised from acetic acid; yield 4.00 g (80),m.p.175-176' (decomp.) (Found: C, 41.3; H, 2.8.C,H,OS,HClO,requires C, 41.15; H, 2.7) ; 7(CD,CN) 1.2-1.9 (4H, aromatic and H-3) and -0.5 (H-1, d, J 3 Hz);A,, (MeCN) 230 (log t 4.23), 258 (4.51), 310 (3.68), 319(3.60), and 390 nm (3.74); mle 324 (33, -If+), 291 (34),162 (go), 149 (13), 147 (14), and 134 (100).(b) 4-Acetoxy-2-benzothiopyrylium perchlorate (3.04 g,0.01 mol) was dissolved in trifluoroacetic acid (50 ml) andleft a t room temperature for 5 h. The solution was thenevaporated at reduced pressure and the residue (6) recrystal-lised from acetic acid; yield 1.83 g (70).4--4 cetoxy-2-benzothiopyryliurtz Perchlorate (7) .-Isothio-chroman-Cone (1.64 g, 0.01 mol) was dissolved in acetic acid(10 ml) and acetic anhydride (10 ml), and triphenylmethylperchlorate (3.42 g, 0.01 mol) was added.The mixture washeated at 60-70 OC for 5-10 min. The progress of thereaction was indicated by the dissolution of the perchlorateand the green colour of the resultant solution. The coldsolution was poured into anhydrous ether (250 ml) and theprecipitated salt washed with ether and methylene chloridebefore recrystallisation from acetic acid-acetonitrile ; yield2.50 g (95), m.p. 150' (decomp.) (Found: C, 43.6; H,3.25. C,,H,O,S,HClO, requires C, 43.35; H, 2.95) ;7 (CD,CN) 7.4 (Ac), 1.2-1.9 (4H, aromatic), 0.8 (d, Jr,3 3Hz, H-3), and -0.9br (d, H-1); A,, (MeCN) 230 (log E4.23), 258 (4.51), 310 (3.68 ),319 (3.60), and 390 nm (3.74).syn- and anti-5,6,12,13-Tetral~ydro-5,13: 6,12-bisepithio-dibenzoa,fcyclodecene-7,14-dione (9) .-4-Hydroxy-2-benzo-thiopyrylium perchlorate (2.62 g, 0.01 mol) was dissolved inanhydrous tetrahydrofuran (150 ml) and acetonitrile (50 ml) .Triethylamine (1.01 g, 0.01 mol) in tetrahydrofuran (50 nil)was added dropwise with stirring over 1 h to the solution atroom temperature.A deeper yellowish-green colour ap-peared during the addition and disappeared rapidly after-wards. The solution was then washed with water, dried,and evaporated. The residue was dissolved in methylenechloride and chromatographed on silica gel (0.2-0.5 mm).The syn-dimer (major isomer) was eluted with methylenechloride after the anti-dimer; yield 1.19 g (74), m.p. 335"(subl.) (from chloroform) (Found: C, 66.55; H, 3.85.C,,H,,0,S2 requires C, 66.65; H, 3.7); 7 (CD,),SOJ 5.65.0br (9, H-5 and -12), and 3.6-3.1 (8H, aromatic); lb,(MeCN) 221 (log E 4.27), 241 (4.28), 292 (3.59), and 371 nm(2.77); m/e 324 (15, M+) 291 (22), 162 (46), 149 (83), 147(lo), and 134 (100).The yield of the anti-isomer was 0.16 g (10) ; m.p. 242-243 "C (from chloroform) (Found: C, 66.4; H, 3.9).Hz, H-6 and -13), 5.5br (4, H-5 and -12), 1.8-2.0 (2H,aromatic ortho t o CO), and 2.3-2.7 (6H, aromatic); Amax.(MeCN) 246 (log t 4.34), 298 (3.80), 350 (2.94), and 365 nm(2.95); mje 324 (32, M+), 291 (43), 162 (94), 149 (14), 147(19), and 134 (100).(9, J5,6 = J12.13 = 12, J5.13 = J f j , l Z = Hz, H-6 and -13)If (CD3)2Sol 6*3 (9, J S , 6 = Jl2.13 = 5*5, J5.13 = J6.12 =solution was poured into anhydrous ether (250 ml) and the 4/2709 Received, 30th December, 19741T. Gr~rnneberg and K. Undheim, Ovg. Mass Spectvometly, 21 E. A. Chandross and C. J. Dempster, J . Amel,. Chem. Soc.,1972, 6, 226. 1970. 92. 703.2o P. E. Hansen and K. Undheim, Acta Chem. Scald., 11, 1975, 22 'H:-J. Dauben, L. R. Honnen, and K. M. Harmon, J . Org.29, 221. Clzem., 1960, 25, 1442
机译:13 66 J.C.S. Perkin 铱盐。第五部分 5,6,12,13-四氢-5,13 : 6,12-双环硫代二苯并[a,f]环癸烯-7,14-d离子由D i rner isat io n of 2-苯并t h iopyry I -ium-4-olate作者:Kjell Undheim * and Sigurd Baklien, Department of Chemistry, University of Oslo, Oslo 3, Norway2 - Be nzot h i o pyr y I i u m - 4- o la te, s y n t h esised fro m i sot h i o c h ro 马 n - 4 - 一 a nd i so I 在 ed 作为鲈鱼 1 或 i c 酸盐,很容易二聚化得到立体异构体 5.1 3 :6,12-双硫代二苯并[a,f] 环癸烯;同异构体是主要产物。讨论了异构体的光谱数据和syn-form的X射线数据。含有一个杂原子的三元环通过一个亚基化物中间体与1,3-亲双极分子反应.2.3 当这样的三元环熔合到另一个中等尺寸的环上时,系统的几何形状不允许热旋转环开口,而旋转光化学开口是 l l o ~ e d .~ 然而,在融合的独立系统中,三元环的形式不允许和允许的开口都发生了, 如 1,3-偶极 1 第 IV 部分所示,K. Undheim 和 B. P. Nilsen, Acta Chem. Scand., B,in the press.J. H. Hall and R. Huisgen, Chem. Comnz., 1971, 1187.3 H. Hamberger and R. Huisgen, Chem. Comm., 1971, 1190.J. W. Lown and K. Matsumoto, J .Org. Chem., 1971, 36,J. W. Lown 和 K. Matsumoto, Canad. J .Chem., 1971,1405.49, 3446.加成反应^.^-^ 在没有合适的亲偶极性的情况下,二聚化可能需要 据报道,这种类型的第一异构化反应是针对苯基取代的茚酮环氧化物:'y9 这些 (1 ;X = 0) 是 2-苯并吡喃-4-醇酸盐的价异构体 (3;X = 0)。所述2,3-二苯基环氧化物(1;X =0) 与介子系统处于平衡状态 (3);平衡位置非常有利于环氧化物 I S ~ M e R 。~ ?~ 推测是反应性碳 nyl654.86, 3814.1964, 1847.1966, $8, 4942,6 D. L. Garling 和 N. H. Cromwell, J .Org. Chem., 1973, 38,7 E. F. Ullman 和 J. E. Milks, J .Amer. Chem. Soc., 1964,8 H. E. Zimmerman 和 R. D. Simkin, Tetrahedron Letters,@ E. F. Ullman 和 W. A. Henderson, J .Amer. Chem. Soc.1975 1367ylide (2) 可由这些形式中的任何一种产生。异喹啉-4-醇酸盐的相关异构化 (3 ;X =NR)转为la,6a-二氢茚并[1,2-b]吲啉-6(1H)-酮(1;X = NR)似乎没有报告;然而,相反方向的异构化使异喹啉-4-醇酸盐的合成变得容易合成.10偶氮亚甲基化物结构(2)解释了N-甲基异喹啉-4-醇酸盐的环加成反应所证明的1,3-偶极特性;u 1,3-偶极特性也已证明吡啶-3-01ates.l~吡喃-3-醇及其硫基类似物,然而,尚未可用于此类研究。0( 2 )方案 10-( 3 )简单的吡喃和巯基吡喃-3-醇酸盐预计不稳定,这反映在吡喃和硫代吡喃阳离子的低稳定性上.13 我们在这里描述了对 2-苯并硫代吡喃-4-醇的研究 (6).由价异构环硫化物合成该化合物(1;X = S)类比氮杂类似物与异喹啉-4-醇酸盐的光解异构化,鉴于活化环硫化物的不稳定性,没有尝试;该合成实际上是根据方案2.0-0进行的,OH(4)t(7 1方案2(苄基硫代)乙酸(4)通过磷戊0~ide环结成异硫代苯并二氢吡喃-4-酮(5)l~Pyryliuiii阳离子很容易从4H-吡喃中通过氢化物提取由全氯酸三苯甲酯提取生成; l5 三苯甲基试剂在本例中也成功,2-苯并硫代吡喃-4-醇酸盐, 如其高氯酸盐,可由乙酸重结晶而成。在乙酸酐和乙酸存在下制备得到4-乙酰氧基硫代吡喃阳离子(7),收率极高。乙酰氧基衍生物(7)在三氟乙酸(TFA)中的溶液在室温下数小时后完全脱乙酰化,并再次获得中间子化合物(6)作为高氯酸盐。CD,CN中硫代吡喃盐的n.m.r.谱图具有低场吸收的特点,特别是H-1在7 -0.5 for (6)和-0时共振为adoublet。9 代表醋酸纤维 (7) ;在所检查的异喹啉类似物中,H-1 的化学位移在 7 0.4-1.1.10316 范围内硫代吡喃盐 (6) 容易受到水的侵蚀,因此芳香稳定性不如其氮杂类似物。将三乙胺加入到(6)的高氯酸盐的乙腈和四氢呋喃溶液中,得到更深的黄绿色;几分钟后颜色就褪色了。着色在-60“C下维持较长时间,但发生相同的反应,如下所述。将(6)的高氯酸盐添加到叔丁醇钾溶液中,得到相同的主要产物,但总产物的异质性更强。添加三乙胺过程中记录的紫外吸收显示高氯酸盐(6)的长波390 nm波段消失,在355和436 nm处短暂出现两个新波段;一个。最终的长波波段约为365 nm。最终的光谱与异硫代苯并二氢吡喃-4-酮记录到的吲哚腈的光谱有关。U.V. 极大值的第一次偏移归因于中生子系统生成导致的苯酚-酚酸酯偏移 (6)。最终产物由两种物质组成,没有盐样特征。通过硅胶上的柱色谱分离;两者都显示出分子离子 ATM/E 324,并具有相关的质谱碎裂模式,这表明发生了噻吩-liumolate 的二聚化 (6)。异构体比为1:7,在三乙胺的加成过程中,用通常的1,3-亲双极菌进行环加成反应,得到相同的产物;未形成环加合物。类似的异喹-亚利盐系列中的二聚化尚未见报道。I,3-二苯基-2-苯并吡喃鎓-4-醇酸盐(3;X = 0),其环氧化物(1)很容易二聚化,使得一个环氧化物分子(1)中的羰基作为1,3-亲双极性添加到羰基内酯(2)中.7光谱数据在本例中排除了这种二聚化。2-甲基-3-苯基环氧化物(1)的光解得到6%的二聚体材料。光谱证据所表明的结构类似于下面描述的硫代吡喃二聚体的结构(9);没有讨论进一步的立体化学。硫代吡喃鎓二聚体的光谱数据表明,两者具有相同的碳骨架。它们都具有很强的羰基吸收带atlo I?。E. Hansen 和 K. Undheim, J.C.S. Perkin I, 1975, 305.l1 N. Denis, A. R. Katritzky, and Y. Takeuchi, J.C.S. Perkin I,l2 A. R. Katritzky and 3'.竹内,J .Chem. Soc. ( C ) , 1971,l3 J. Degani, R. Fochi, and C. Vincenzi, Boll.Fac. Claim.14 C. C .Price、M. Hori、T. Parasaran 和 M. Polk, J .Amer.l6 K. Undheim 和 E. T. IZlstensen, A d a Chem. Scaszd., 1973,l6 K. Undheim 和 P. E. Hansen, Chemica Scripta, 1973, 3,1972, 2054.s74.27, 1385.i d 博洛尼亚, 1965, 23, 21.Chem. SOL, 1963, 85, 2278.1131368 J.C.S. Perkin I1670 cm-l (KBr)。主要异构体在292和371 nm处具有U.V.谱带(MeCN),次要异构体在298、350和365 nm处具有U.V.谱带(MeCN)。n.m.r.光谱除了芳香质子外,还包含两个偶联甲基质子的信号。数据与面对面的二聚化一致。羰基在同一侧彼此上方的双层过渡态不太可能,因为单体中的定向极化会导致偶极或静电排斥。然而,当羰基排列在相反的两侧时,电荷中心之间存在吸引力;syn- (a) 和反 (b) 排列导致各自的二聚体所示(方案 3).0 3:0常数为 12 Hz。甲氨酸质子显示出进一步的二次耦合(2 Hz)。当syn-(9)溶于[2H6]二甲基亚砜中并加入稀氘氧化钠时,羰基旁边的质子迅速交换;苄基甲胺质子也很容易交换。在羰基(H-6 和 -13)旁边的两个质子交换后,由于剩余的两个苄基质子,单线态显得很宽,可能是因为长程芳香族偶联。2 Hz 的二次分裂在氘化时消失,因此归因于硫桥两侧的甲胺质子之间的偶联。还观察到大约 2 Hz 的二次耦合0( b )SCHEME 30anti-( 9 1从 n.m.r.光谱(见下文)主要异构体被赋予了syn结构,这通过X射线分析得到了证实.l7分子具有双重对称轴。面在 0.1 以内是平面的,硫原子 1 A 在平面外。飞机倾斜;平面与平面之间通过二硫环碳原子之间的内角为 113 英寸。羰基碳(C-7)与最近的非键合芳香族碳原子(C-4a)之间的距离为2.763 A,芳香族碳原子(C4a和-1la)之间的最短面间距为3.242 A;芳香环的正常堆叠距离为3.40 A.18在syn-(9)中,苯环相对于彼此侧向位移,这使得羰基的x电子靠近苯环的x电子。较短的平面间距离意味着 x 系统之间的排斥;这反映在C(5)-C(6)和C(12)-C(13)键长(1.577 A)上,它们明显长于正常的碳-碳单键;然而,碳硫键具有正常值(1.811 和 1.815 A).17 硫原子可以被视为锁定在舟构象中的 1,4-二噻烷环的一部分。因此,邻近质子之间的扭转角很小;经验值为10.7和30,17,并且邻域偶联在反异构体的光谱中,其刚性锁定在1,4-二噻环的椅子构象中;甲胺质子的邻域耦合常数为5.5Hz。在这两种异构体中,硫原子两侧的甲胺质子几乎是共周面的;这也许是观察到的耦合幅度的原因。同异构体中芳香质子的共振发生在比反异构体(7 1.8-2.7)更高的场(z 2.6-3.1)处。异硫代色满-4-酮(5)中的芳香质子在“c 2.0-2.8”区域共振,主要位移差异发生在芳香质子与羰基邻位的情况下,羰基是反(9)和(5)中最低场芳香族信号的原因。在同异构体中,该质子位于苯环上方,因此位于芳香族屏蔽区,这有效地抵消了羰基的各向异性效应。二聚体的质谱包含相同的主要片段,但相对强度不同。基峰为m/e 134(c8H6s),同异构体和反异构体的分子离子相对强度分别为15%和30%。高氯酸的光谱17 P.Groth, Acta Chem. Scand., A , in the press.l* D. J. Cram and J. M. Cram, Accounts Chenz.Res., 1971,4, 2041975 1369 硫代吡喃鎓酸盐 (6) 在蒸发前显示出占主导地位的热解二聚化,其光谱在相对碎片强度上与反异构体相似。该物质的直接蒸发(6)似乎微不足道。这一观察结果说明了阳离子芳香族体系中硫原子和氮原子稳定性的差异:单异喹啉-4-醇酸盐和吡啶-3-醇酸盐在质谱仪中很容易蒸发而没有异构化.1Q~ 2O在许多高度应变的环烷体系中,苯环(9)是平面的,而不是弯曲的.15由于硫交联阻止了异构体的相互转化,结构是刚性的;反异构体可能由于空间原因,热力学上更稳定。该合异构体与1,3-双-(a-萘1)丙烷分子内光二聚化形成的对称夹心状[2,2]邻环烷有些相似;21 形成的异构体是过渡态中 x 轨道最大重叠的异构体.21 1,3-偶极环加成和 Diels-Alder 反应中的优先内加合物形成已被解释为过渡态中的次级轨道重叠.6 对于(9)的合成异构体的优先形成,可以提出类似的论点,尽管二聚化可能是通过中间两性离子样结构的两步过程 (8).在(6)的二聚化中还存在立体化学方向的另一种可能性:苯环中的微分极化,这可能是由于异质环中的电荷分离,当排列如(a)所示时,可能导致苯环之间的偶极吸引力不弱。最终产品的立体化学已经由在没有差向异构化的情况下的第一个碳-碳键形成决定。二聚化反应是快速和选择性的,这表现为所有尝试过的亲偶极试剂的协同 1,3-偶极环加成失败。EXPERIMENTAL3I.m.r.光谱记录在瓦里安A-60 A或A-100仪器上,紫外光谱记录在Cary 14分光光度计上,质谱记录在A.E.1.-902光谱仪上。异硫代苯并二氢吡喃-4-酮(5),如所述制备,14 hadand 2.3-2.8 (3H, 芳香族) ;A,, (MeCN) 248 (log E 3.99)、291 (3.23) 和 344nm (2.36);m/e 164 (63%, M+), 118 (loo), 90 (59), and 89 (17).4-羟基-2-苯并硫代吡喃鎓高氯酸盐 (6) .-(a) 异硫代苯并吡喃-4-酮 (3.28 g, 0.020 mol) 溶于无水乙腈 (20 ml) 中,加入全氯酸三苯甲基 22 (6.50 g, 0.019 mol)。将反应混合物在55-60“C下加热10分钟。冷'F [(CD,),SO] 6.4 (2 x H-3), 6.0 (2 x H-1), 2.0-2.2 (H-5),沉淀出绿色高氯酸盐收集。用无水醚和二氯甲烷洗涤后,用醋酸重结晶;产量 4.00 g (80%),熔点 175-176' (分解)(已找到:C,41.3;H, 2.8.C,H,OS,HClO,需要C, 41.15;H, 2.7%) ;7(CD,CN) 1.2-1.9 (4H, 芳香族和 H-3) 和 -0.5 (H-1, d, J 3 Hz);A,, (MeCN) 230 (log t 4.23), 258 (4.51), 310 (3.68), 319 (3.60), 和 390 nm (3.74);mle 324 (33%, -If+)、291 (34)、162 (go)、149 (13)、147 (14) 和 134 (100)。(b)将4-乙酰氧基-2-苯并硫代吡喃鎓高氯酸盐(3.04 g,0.01 mol)溶于三氟乙酸(50 ml)中,室温放置t5 h。然后减压蒸发溶液,残余物(6)从乙酸中重结晶;收率1.83 g(70%).4--4 十六烷氧基-2-苯并噻吩高氯酸盐(7).-异硫代色满-锥体(1.64 g,0.01 mol)溶于乙酸(10 ml)和乙酸酐(10 ml),加入三苯甲基高氯酸盐(3.42 g,0.01 mol)。将混合物在60-70°C下加热5-10分钟。高氯酸盐的溶解和所得溶液的绿色表明了其作用的进展。将冷溶液倒入无水乙醚(250ml)中,沉淀盐用乙醚和二氯甲烷洗涤,然后用乙酸-乙腈重结晶;yield2.50 g (95%), 熔点 150' (分解)(发现:C,43.6;H,3.25。C,,H,O,S,HClO,需要C,43.35;H, 2.95%) ;7 (CD,CN) 7.4 (Ac), 1.2-1.9 (4H, 芳香族), 0.8 (d, Jr,3 3Hz, H-3), 和 -0.9br (d, H-1);A,, (MeCN) 230 (log E4.23)、258 (4.51)、310 (3.68 )、319 (3.60) 和 390 nm (3.74).将-5,6,12,13-四氢丙基~ydro-5,13:6,12-双环硫基二苯并[a,f]环癸烯-7,14-二酮(9).4-羟基-2-苯并硫代吡喃鎓高氯酸盐(2.62 g,0.01 mol)溶于无水四氢呋喃(150 ml)和乙腈(50 ml)。三乙胺(1.01g,0.01mol)的四氢呋喃(50无)溶液在室温下搅拌1小时。在添加过程中,较深的黄绿色逐渐消失,之后迅速消失。然后将溶液用水洗涤,干燥,蒸发。将残留物溶解在二氯甲烷中,并在硅胶(0.2-0.5mm)上色谱。在反二聚体之后用二氯甲烷洗脱合成二聚体(主要异构体);产量 1.19 g (74%), 熔点 335“(subl.)(来自氯仿)(发现: C, 66.55;H, 3.85.C,,H,,0,S2 需要 C, 66.65;H, 3.7%);7 [(CD,),SOJ 5.65.0br (9, H-5 和 -12), 和 3.6-3.1 (8H, 芳香族); lb,(MeCN) 221 (log E 4.27), 241 (4.28), 292 (3.59), 和 371 nm(2.77); m/e 324 (15%, M+) 291 (22), 162 (46), 149 (83), 147(lo), 和 134 (100)。反异构体收率为0.16 g(10%);m.p. 242-243 “C(来自氯仿)(发现:C,66.4;H,3.9%)。Hz,H-6和-13),5.5br(4,H-5和-12),1.8-2.0(2H,芳香邻位),和2.3-2.7(6H,芳香);最大值。(MeCN) 246 (log t 4.34)、298 (3.80)、350 (2.94) 和 365 nm (2.95);mje 324 (32%, M+), 291 (43), 162 (94), 149 (14), 147(19) 和 134 (100)。(9, J5,6 = J12.13 = 12, J5.13 = J f j , l Z = Hz, H-6 和 -13)>如果 [(CD3)2Sol 6*3 (9, J S , 6 = Jl2.13 = 5*5, J5.13 = J6.12 = 溶液倒入无水乙醚 (250 ml) 中,并且 [4/2709 收稿日期,19741 年 12 月 30 日T. Gr~rnneberg 和 K. Undheim, Ovg.质谱仪, 21 E. A. Chandross 和 C. J. Dempster, J .阿梅尔,。化学学报,1972, 6, 226.1970. 92.703.2o P. E. Hansen 和 K. Undheim, Acta Chem. Scald., 11, 1975, 22 'H:-J. Dauben, L. R. Honnen, and K. M. Harmon, J .组织29,221。Clzem., 1960, 25, 1442

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号