首页> 外文期刊>British Journal of Pharmacology >Inhalational anaesthetics and n-alcohols share a site of action in the neuronal Shaw2 Kv channel.
【24h】

Inhalational anaesthetics and n-alcohols share a site of action in the neuronal Shaw2 Kv channel.

机译:Inhalational anaesthetics and n-alcohols share a site of action in the neuronal Shaw2 Kv channel.

获取原文
获取原文并翻译 | 示例
           

摘要

BACKGROUND AND PURPOSE: Neuronal ion channels are key targets of general anaesthetics and alcohol, and binding of these drugs to pre-existing and relatively specific sites is thought to alter channel gating. However, the underlying molecular mechanisms of this action are still poorly understood. Here, we investigated the neuronal Shaw2 voltage-gated K(+) (K(v)) channel to ask whether the inhalational anaesthetic halothane and n-alcohols share a binding site near the activation gate of the channel. EXPERIMENTAL APPROACH: Focusing on activation gate mutations that affect channel modulation by n-alcohols, we investigated n-alcohol-sensitive and n-alcohol-resistant K(v) channels heterologously expressed in Xenopus oocytes to probe the functional modulation by externally applied halothane using two-electrode voltage clamping and a gas-tight perfusion system. KEY RESULTS: Shaw2 K(v) channels are reversibly inhibited by halothane in a dose-dependent and saturable manner (K(0.5)= 400 microM; n(H)= 1.2). Also, discrete mutations in the channel's S4S5 linker are sufficient to reduce or confer inhibition by halothane (Shaw2-T330L and K(v)3.4-G371I/T378A respectively). Furthermore, a point mutation in the S6 segment of Shaw2 (P410A) converted the halothane-induced inhibition into halothane-induced potentiation. Lastly, the inhibition resulting from the co-application of n-butanol and halothane is consistent with the presence of overlapping binding sites for these drugs and weak binding cooperativity. CONCLUSIONS AND IMPLICATIONS: These observations strongly support a molecular model of a general anaesthetic binding site in the Shaw2 K(v) channel. This site may involve the amphiphilic interface between the S4S5 linker and the S6 segment, which plays a pivotal role in K(v) channel activation.

著录项

  • 来源
    《British Journal of Pharmacology》 |2010年第7期|1475-1485|共11页
  • 作者单位

    Department of Pathology, Anatomy and Cell Biology, Jefferson Medical College of Thomas Jefferson University, Philadelphia, PA, USA.;

  • 收录信息 美国《科学引文索引》(SCI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 英语
  • 中图分类 药理学;
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号