...
首页> 外文期刊>mendeleev communications >Super-stable metallotetraphenylporphyrins
【24h】

Super-stable metallotetraphenylporphyrins

机译:超稳定金属四苯基卟啉

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Mendeleev Communications Electronic Version, Issue 6, 1997 (pp. 213–252) Super-stable metallotetraphenylporphyrins Tatyana N. Lomova,* Elena Yu. Tulaeva, Elena G. Mozhzhukhina and Maria E. Klyueva Institute of Non-Aqueous Solution Chemistry, Russian Academy of Sciences, 153045 Ivanovo, Russian Federation. Fax: + 7 0932 37 8509 Super-stable porphyrin complexes [germanium(IV) and tin(IV)tetraphenylporphyrins], precipitated from concentrated sulfuric acid poured onto ice, have been discovered, together with stable metallophthalocyanines, and their stability is characterised and the dissociation mechanism in proton donor solvents investigated.It is known that stable metallophthalocyanines crystallize out when their sulfuric acid solutions are poured onto ice. This is used as a method of high purification from admixtures after template synthesis of the complexes.1 Metalloporphyrins with composition MP (P = porphyrin dianion, M = doubly-charged metal cation) are less stable2–4 and undergo destruction, being dissolved in concentrated H2SO4.Before any detailed investigations into the stability of acidoporphyrin complexes of highly charged metal cations of composition (X)n–2MP (X = single-charged acido ligand) appeared it had been assumed5 that all metalloporphyrins were unstable in sulfuric acid.It was shown6–8 that complexes of tetraphenylporphin (X)n–2MTPP and O=VOEP with covalent bonding acidoligands X in the first coordination sphere and in some cases complexes with composition MP do not undergo destruction in concentrated H2SO4.However, it was difficult to identify the complexes in the sulfuric acid solution because they form an H-associate (X)n–2MTPP···H+ Solv with an electronic absorption spectrum possessing two wide bands at 540 and 700 nm; this differs from the usual spectra of the metalloporphyrin solutions. This applies to (X)MnTPP, (X)FeTPP, O=TiTPP, (Cl)InTPP, (AcO)GaTPP and several of their functional derivatives. Now a qualitative reaction which shows the dissociation process of metalloporphyrins in H2SO4 or its absence has been found.9 An attempt to crystallize metalloporphyrin bonding into the Hassociate leads to dissociation of the complex in all cases.In this communication new quantitative data about the existence of metalloporphyrins, which are stable in hot (398 K) concentrated sulfuric acid in the molecular form (in contrast to the H-associate), and which can be recrystallized from sulfuric acid solutions similar to stable metallophthalocyanines, are presented.These are (dichlorine)germaniumtetraphenylporphin (Cl)2GeTPP and (dichlorine)tintetraphenylporphin (Cl)2SnTPP. (Cl)2GeTPP was obtained as described in ref. 10 by reaction of the complex formation of H2TPP with GeCl4 in quinoline at 510 K under a nitrogen atmosphere.(Cl)2SnTPP was obtained as described in ref. 11 by an analogous reaction of H2TPP with SnCl2 in boiling dimethylformamide. The tin complex was purified by chromatography on an Al2O3 column using CHCl3 and the germanium complex using CHCl3 and then diethyl ether. UV/VIS spectra of the complexes coincide with literature data12,13 lmax/nm (lg e): 402 (sh.), 423 (5.76), 485 (sh.), 516 (3.49), 554 (4.29), 592 (3.83) and 406 (4.63), 428 (5.83), 490 (sh.), 522 (3.56), 561 (4.34), 601 (4.13) for germanium and tin complexes in CHCl3, respectively.The complexes are partially dissolved in concentrated H2SO4, in which their solutions are rose in colour in contrast to the brown solution in case of the H-associate formation. The general character of their visible spectra in sulfuric acid is the same as in organic solvents, but the absorption maxima have lower wavelengths lmax/nm: 516, 545, 572 and 510, 547, 586 for the germanium and tin complexes, respectively. After reprecipitation of the germanium and tin complexes from sulfuric acid onto ice their spectra do not change.(Cl)2MTPP undergoes dissociation [reaction (1)] at a spectrophotometrically measured rate only in media with a maximum proton donor particles content: in H2SO4 at a concentration near 100% over 340 K. In 83–97% sulfuric acid where stable metallophthalocyanines dissociate slowly the tetraphenylporphyrin complexes with Sn and Ge remain unchanged for a long time.This defines the metalloporphyrins as complexes with unsurpassed kinetic stability in solution. Solvent H2SO4–H2O with acid content 99.94–99.98% was prepared by the weight method from 100% H2SO4 and H2SO4 with definite concentration. Experimental constants of the dissociation rate kobs were defined from dependences ln C0/Ct–t (Figure 1) using the least-squares method. Selection of pairs of values of argument and function was 10–12.Each experiment was repeated 2–3 times. Constants for the reaction of (Cl)2SnTPP in 100% H2SO4 and (Cl)2GeTPP in 99.93–100% 0 1 2 3 20 40 60 80 100 t/min ln C0 /Ct (1) (2) (3) (4) Figure 1 Dependence of the logarithm of the ratio of initial and current concentrations of metalloporphyrin ln C0 /Ct vs. time t. CH2SO4 (%): (1), (3) 99.96; (2), (4) 99.94.T/K: (1), (2) 362; (3), (4) 358. Figure 2 Dependence of the observed rate constant for dissociation of (Cl)2SnTPP vs. H2SO4 concentration. T/K: (1) 353, (2) 358, (3) 362, (4) 298. 20 10 18.650 18.655 18.660 (1) (2) (3) (4) [H2SO4]0/mol dm–3 kobs /10–4 s–1 kobs /10–6 s–1 10 (Cl)2MTPP + 4H+ Solv H4TPP2+ + (Cl)2M2+ Solv (1)Mendeleev Communications Electronic Version, Issue 6, 1997 (pp. 213–252) H2SO4 were published earlier,5,14 and values of kobs for dissociation of the tin complex in H2SO4–H2O mixtures were obtained for the first time (Figures 2, 3). It follows from Figure 1 that the rate equation for reaction (1) for the complexes of tin(IV) and germanium(IV) can be expressed by equation (2): However, the influence of the H2SO4 concentration complicates the rate equation.As shown in Figure 2, the plot of the observed rate constant for the dissociation of (Cl)2SnTPP vs. [H2SO4] yields a curve concave to the axis of the rate constant and passing through the origin (the complex does not undergo dissociation in aqueous solutions). A general rate law conforming to this situation is given by equations (3) or (4): The values of k1 and k2 obtained from the linear dependence of kobs/[H2SO4] vs.[H2SO4] [correlation coefficient r = 0.97; selection of pairs of values of argument and function (2–3)×5] within the least-squares method are (5±1)×10–3 dm6 mol–2 s–1 and (1.0±0.2)×10–2 dm3 mol–1 s–1, respectively, at 353–362 K. The temperature dependence of the rate constants is within the limits of stated error.An attempt to find the linear correlation of kobs and [H3O+], [H3O+]2, [H2SO4] or [H2SO4]2 leads to worse correlation coefficients. The general rate equation (5) testifies that the dissociation reaction of the tin complex proceeds along two parallel routes. This fact has been found experimentally for the first time for the dissociation reactions of metalloporphyrins and their azabenzo analogues – the metallophthalocyanines.Each of the mentioned routes of the reaction can be interpreted within the bounds of mechanisms already known for other metalloporphyrins: SEN39 (route 1 with k1 constant) and SN215 (route 2 with k2 constant). The corresponding transition states are: [(Cl)2MTPP·2H2SO4]� and [(Cl)2MTPP·H2SO4]�. It must be pointed out that the dissociation reaction for the tin complex proceeds along route 1 under the action of H2SO4 molecules but not H3O+ as for metallophthalocyanines.In case of (Cl)2GeTPP kobs constants (Figure 3) are in linear correlation with [H2SO4]2 (r = 0.97): where k1 = (1.4±0.2)×10–3 and (5.5±1)×10–3 dm6 mol–2 s–1 at 323 and 333 K, respectively, Ea = 121 kJ mol–1, DS� = = 69 J mol–1 K–1.Comparison of equations (5) and (6) shows that the reaction route with k2 constant is imperceptible for the dissociation of the germanium complex. The stability of the metalloporphyrins discussed in the mixed solvent H2Ssh;H2O in the Brand region (where H3O+ concentration is high) as well as specific rate equation (5), are apparently caused by the strong covalent bonding of acido ligands (Cl) in the coordination sphere.Dissociation of M–Cl bonds of complexes (Cl)2MTPP probably takes place only in media of maximum dielectric permeability, i.e. 99.94–100% H2SO4. References 1 A. B. P. Lever, Adv. Inorg. Chem. Radiochem., 1965, 7, 27. 2 H. Zimmerman, Metalloporphirine, Molibdaenthiokomplexe und deren dohhelschtassoziate auf Silicagel. Diss. Dokt. Naturwiss., ETH, Zurich, 1984, 23 (in German). 3 B. D. Berezin, A. N. Drobisheva and E. A. Venedictov, Koord. Khim., 1976, 2, 346 [Sov. J. Coord. Chem. (Engl. Transl.), 1976, 257]. 4 A. Adeyemo, A. Valiotti, C. Burnham and P. Hambright, Inorg. Chim. Acta, 1981, 54, 63. 5 T. N. Lomova and B. D. Berezin, Zh. Neorg. Khim., 1979, 24, 1574 [J. Inorg. Chem. USSR (Engl. Transl.), 1979, 24, 874]. 6 T.N. Lomova, N. I. Volkova and B. D. Berezin, Zh. Neorg. Khim., 1987, 32, 969 [J. Inorg. Chem. USSR (Engl. Transl.), 1987, 32, 542]. 7 R. Bonnett, P. Brewer, K. Noro and T. Noro, Tetrahedron, 1978, 34, 379. 8 Yu. V. Ishkov and Z. I. Zhilina, Zh. Org. Khim., 1995, 31, 136 (Russ. J. Org. Chem., 1995, 31, 123). 9 T. N. Lomova, E. G. Mozhzhukhina, L. P. Shormanova and B. D. Berezin, Zh.Obshch. Khim., 1989, 59, 2317 [J. Gen. Chem. USSR (Engl. Transl.), 1989, 59, 2077]. 10 J. I. Maskasky and M. E. Kenney, J. Am. Chem. Soc., 1973, 95, 1443. 11 A. D. Adler, F. R. Longo, F. Kampas and J. Kim, J. Inorg. Nucl. Chem., 1970, 32, 2443. 12 A. L. Balch, C. R. Cornmann and M. M. Olmstead, J. Am. Chem. Soc., 1990, 112, 2963. 13 P. Rothemund and A. Menotti, J. Am. Chem. Soc., 1948, 70, 1808. 14 T. N. Lomova, E. G. Mozhzhukhina and B. D. Berezin, Zh. Neorg. Khim., 1993, 38, 1552 (in Russian). 15 T. N. Lomova and B. D. Berezin, Zh. Fiz. Khim., 1983, 42, 993 [J. Phys. Chem. USSR (Engl. Transl.), 1983, 42, 563]. –dC(Cl)2MTPP/dt = kobs[(Cl)2MTPP] (2) kobs = k1[H2SO4]2 + k2[H2SO4] kobs/[H2SO4] = k1[H2SO4] + k2 (3) (4) –dC(Cl)2SnTPP/dt = [(Cl)2SnTPP](k1[H2SO4]2 + k2[H2SO4]) (5) –dC(Cl)2GeTPP/dt = k1[(Cl)2GeTPP][H2SO4]2 (6) Figure 3 Dependence of the observed rate constant for dissociation of (Cl)2GeTPP vs. H2SO4 concentration. T/K: (1) 313, (2) 323, (3) 333, (4) 298. 20 10 18.650 18.655 18.660 (1) (2) (3) (4) [H2SO4]0/mol dm–3 kobs /10–4 s–1 kobs /10–5 s–1 10 20 18.650 18.655 18.660 Received: Moscow, 26th May 1997 Cambridge, 26th August 1997; Com. 7/03876C
机译:门捷列夫通讯电子版,1997 年第 6 期(第 213-252 页) 超稳定金属四苯基卟啉 塔季扬娜·洛莫娃(Tatyana N. Lomova),* 埃琳娜·余(Elena Yu)。Tulaeva、Elena G. Mozhzhukhina 和 Maria E. Klyueva 俄罗斯科学院非水溶液化学研究所,153045 Ivanovo,俄罗斯联邦。传真: + 7 0932 37 8509 将浓硫酸倒入冰上沉淀出的超稳定卟啉络合物[锗(IV)和锡(IV)四苯基卟啉]与稳定的金属酞菁一起被发现,并表征了它们的稳定性,并研究了它们在质子供体溶剂中的解离机理。众所周知,当稳定的金属酞菁溶液倒入冰上时,会结晶出来。1 组合物为 MP(P = 卟啉二离子,M = 带双电荷的金属阳离子)不太稳定2-4 并发生破坏,溶解在浓的 H2SO4 中。在对组成 (X)n–2MP(X = 单电荷酸配体)的高电荷金属阳离子的酸卟啉络合物的稳定性进行任何详细研究之前,人们已经假设 5 所有金属卟啉在硫酸中都不稳定。结果表明6-8,在第一配位球体中具有共价键酸寡和X的四苯基卟啉(X)n-2MTPP和O=VOEP的络合物,以及在某些情况下具有组成MP的络合物在浓H2SO4中不会被破坏。然而,硫酸溶液中的络合物很难鉴定,因为它们会形成H-缔合物(X)n–2MTPP···H+ Solv,具有电子吸收光谱,在 540 nm 和 700 nm 处具有两个宽带;这与金属卟啉溶液的通常光谱不同。这适用于(X)MnTPP、(X)FeTPP、O=TiTPP、(Cl)InTPP、(AcO)GaTPP及其几种功能衍生物。现在发现了一种定性反应,表明金属卟啉在 H 中的解离过程2SO4 或不存在.9 试图将金属卟啉键结晶成 Hassociate 导致复合物在所有情况下的解离。在该通讯中,提出了关于金属卟啉存在的新定量数据,金属卟啉在分子形式的热(398 K)浓硫酸中稳定(与H-缔合物相反),并且可以从类似于稳定的金属酞菁的硫酸溶液中重结晶。这些是(二氯)锗四苯基卟啉 (Cl)2GeTPP 和(二氯)锡四苯基卟啉 (Cl)2SnTPP。 (Cl)2GeTPP 如参考文献 10 所述,在氮气气氛下,在氮气气氛下,在喹啉中与 GeCl4 络合物形成反应,获得 510 K。(Cl)2SnTPP如参考文献11所述,通过H2TPP与SnCl2在沸腾的二甲基甲酰胺中的类似反应获得。锡络合物在Al2O3色谱柱上使用CHCl3进行色谱纯化,锗络合物使用CHCl3,然后使用乙醚进行纯化。配合物的紫外可见分光度计与文献数据12,13 lmax/nm (lg e):CHCl3中锗和锡配合物分别为402 (sh.)、423 (5.76)、485 (sh.)、516 (3.49)、554 (4.29)、592 (3.83)和406 (4.63)、428 (5.83)、490 (sh.)、522 (3.56)、561 (4.34)、601 (4.13)。络合物部分溶解在浓的 H 中2SO4,其中它们的溶液呈玫瑰色,与形成 H 缔合的棕色溶液形成鲜明对比。它们在硫酸中的可见光谱的一般特征与在有机溶剂中相同,但最大吸收波长lmax/nm较低:锗和锡配合物分别为516、545、572和510、547、586。锗和锡络合物从硫酸再沉淀到冰上后,它们的光谱不会改变。(Cl)2MTPP 仅在质子供体颗粒含量最大的介质中以分光光度法测量的速率发生解离 [反应 (1)]:在 H2SO4 中,浓度接近 100%,超过 340 K。在83-97%的硫酸中,稳定的金属酞菁缓慢解离,四苯基卟啉与Sn和Ge的络合物长时间保持不变。这将金属卟啉定义为在溶液中具有无与伦比的动力学稳定性的络合物。以100%H2SO4和H2SO4为原料,采用重量法制备酸含量为99.94–99.98%的溶剂H2SO4–H2O,浓度为一定浓度。使用最小二乘法根据依赖性ln C0/Ct–t(图1)定义解离速率kobs的实验常数。参数和函数值对的选择为10-12次,每个实验重复2-3次。(Cl)2SnTPP 在 100% H2SO4 和 (Cl)2GeTPP 在 99.93–100% 中的反应常数 0 1 2 3 20 40 60 80 100 t/min ln C0 /Ct (1) (2) (3) (4) 图1 金属卟啉ln C0 /Ct的初始浓度和当前浓度之比与时间t的对数关系。 CH2SO4 (%): (1), (3) 99.96;(2)、(4)99.94.T/K:(1)、(2)362;(3), (4) 358.图 2 (Cl)2SnTPP 解离的速率常数与 H2SO4 浓度的相关性。T/K:(1)353,(2)358,(3)362,(4)298。20 10 18.650 18.655 18.660 (1) (2) (3) (4) [H2SO4]0/摩尔 dm–3 kobs /10–4 s–1 kobs /10–6 s–1 10 (Cl)2MTPP + 4H+ 溶胶 H4TPP2+ + (Cl)2M2+ 溶胶 (1)门捷列夫通讯电子版,1997 年第 6 期(第 213-252 页) H2SO4 较早发表,5,14 并首次获得了 H2SO4–H2O 混合物中锡络合物解离的 kobs 值(图 2, 3).从图 1 可以看出,锡 (IV) 和锗 (IV) 络合物的反应 (1) 的速率方程可以用公式 (2) 表示: 然而,H2SO4 浓度的影响使速率方程复杂化。如图 2 所示,观察到的 (Cl)2SnTPP 与 [H2SO4] 解离的速率常数曲线曲线与速率常数轴凹陷并穿过原点(复合物在水溶液中不发生解离)。符合这种情况的一般速率定律由等式(3)或(4)给出:k1和k2的值由kobs/[H2SO4]与[H2SO4][相关系数r = 0.97;在最小二乘法中选择参数和函数(2-3)×5]的值的线性依赖性获得,分别为(5±1)×10–3 dm6 mol–2 s–1和(1.0±0.2)×10–2 dm3 mol–1 s–1, 分别为 353–362 K。速率常数的温度依赖性在规定误差的范围内。试图找到 kobs 和 [H3O+]、[H3O+]2、[H2SO4] 或 [H2SO4]2 的线性相关性会导致更差的相关系数。一般速率方程(5)证明锡络合物的解离反应沿着两条平行路线进行。这一事实首次在实验中被发现用于金属卟啉及其氮杂苯并类似物(金属酞菁)的解离反应。上述反应路线中的每一条都可以在其他金属卟啉已知的机制范围内解释:SEN39(路线 1,k1 常数)和 SN215(路线 2,k2 常数)。对应的转为:[(Cl)2MTPP·2H2SO4]和[(Cl)2MTPP·H2SO4] .必须指出的是,锡络合物的解离反应在 H 的作用下沿路线 1 进行2SO4 分子,而不是 H3O+ 与金属酞菁一样。在(Cl)2GeTPP的情况下,kobs常数(图3)与[H2SO4]2(r = 0.97)呈线性相关:其中k1 = (1.4±0.2)×10–3和(5.5±1)×10–3 dm6 mol–2 s–1,分别在323和333 K时,Ea = 121 kJ mol–1,DS = = 69 J mol–1 K–1.方程(5)和(6)的比较表明,k2常数的反应路线对于锗配合物的解离是不可察觉的。在混合溶剂H2Ssh中讨论的金属卟啉的稳定性;布兰德区(H3O+浓度高)的H2O以及比速率方程(5)显然是由配位球体(Cl)的酸配体(Cl)的强共价键引起的。配合物 (Cl)2MTPP 的 M-Cl 键的解离可能只发生在具有最大介电渗透率的介质中,即 99.94–100% H2SO4。参考文献 1 A. B. P. Lever, Adv. Inorg.放射化学, 1965, 7, 27.2 H. Zimmerman, Metalloporphirine, Molibdaenthiokomplexe und deren dohhelschtassoziate auf Silicagel.Diss. Dokt.自然。, ETH, 苏黎世, 1984, 23 (德语).3 B. D. Berezin, A. N. Drobisheva 和 E. A. Venedictov, Koord.Khim., 1976, 2, 346 [Sov. J. Coord. Chem. (Engl. Transl.), 1976, 257]。4 A.阿德耶莫、A.瓦利奥蒂、C.伯纳姆和P.汉布赖特,伊诺尔。奇姆。学报, 1981, 54, 63.5 T. N. Lomova 和 B. D. Berezin, Zh. Neorg.Khim., 1979, 24, 1574 [J. Inorg. Chem. USSR (Engl. Transl.), 1979, 24, 874]。6 T.N. Lomova, N. I. Volkova 和 B. D. Berezin, Zh. Neorg.Khim., 1987, 32, 969 [J. Inorg. Chem. USSR (Engl. Transl.), 1987, 32, 542].7 R. Bonnett、P. Brewer、K. Noro 和 T. Noro,四面体,1978 年,34 页,379 页。8 于.V. Ishkov 和 Z. I. Zhilina, Zh. Org. Khim., 1995, 31, 136 (Russ. J. Org. Chem., 1995, 31, 123)。9 T. N. Lomova, E. G. Mozhzhukhina, L. P. Shormanova 和 B. D. Berezin, Zh.Obshch.Khim., 1989, 59, 2317 [J. Gen. Chem. USSR (Engl. Transl.), 1989, 59, 2077]。10 J. I. Maskasky 和 M. E. Kenney, J. Am. Chem. Soc., 1973, 95, 1443.11 A.D.阿德勒、F.R.隆戈、F.坎帕斯和J.Kim、J.Inorg。核。化学, 1970, 32, 2443.12 A. L. Balch, C. R. Cornmann 和 M. M. Olmstead, J. Am. Chem. Soc., 1990, 112, 2963.13 P. Rothemund 和 A. Menotti, J. Am. Chem. Soc., 1948, 70, 1808.14 T. N. Lomova, E. G. Mozhzhukhina 和 B. D. Berezin, Zh. Neorg.Khim., 1993, 38, 1552 (俄文).15 T. N. Lomova 和 B. D. Berezin, Zh. Fiz.Khim., 1983, 42, 993 [J. Phys. Chem. USSR (Engl. Transl.), 1983, 42, 563].–dC(Cl)2MTPP/dt = kobs[(Cl)2MTPP] (2) kobs = k1[H2SO4]2 + k2[H2SO4] kobs/[H2SO4] = k1[H2SO4] + k2 (3) (4) –dC(Cl)2SnTPP/dt = [(Cl)2SnTPP](k1[H2SO4]2 + k2[H2SO4]) (5) –dC(Cl)2GeTPP/dt = k1[(Cl)2GeTPP][H2SO4]2 (6) 图 3 观察到的速率常数对 (Cl)2GeTPP 解离与 H2SO4 浓度的依赖性。T/K:(1)313,(2)323,(3)333,(4)298。20 10 18.650 18.655 18.660 (1) (2) (3) (4) [H2SO4]0/mol dm–3 kobs /10–4 s–1 kobs /10–5 s–1 10 20 18.650 18.655 18.660 收稿日期: 莫斯科,1997年5月26日 剑桥,1997年8月26日;通讯 7/03876C

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号