...
首页> 外文期刊>Mathematical Problems in Engineering: Theory, Methods and Applications >Motion Reliability Analysis of Unlocking Trigger Device Based on CPSO-BR-BP Neural Network with Uncertain Parameters
【24h】

Motion Reliability Analysis of Unlocking Trigger Device Based on CPSO-BR-BP Neural Network with Uncertain Parameters

机译:Motion Reliability Analysis of Unlocking Trigger Device Based on CPSO-BR-BP Neural Network with Uncertain Parameters

获取原文
获取原文并翻译 | 示例

摘要

Aiming at overcoming the problem that the mechanism function of the unlocking trigger device is difficult to obtain and the corresponding reliability analysis cannot be performed, a motion reliability analysis method based on the CPSO-BR-BP neural network proxy model is proposed. Firstly, the particle swarm algorithm is optimized through the chaotic sequence, and the back-propagation (BP) neural network is optimized using Chaos Particle Swarm Optimization (CPSO) and Bayesian Regularization (BR) algorithm. The CPSO-BR-BP neural network proxy model is established, and the reliability of shape memory alloys (SMA) wire unlocking based on the structural function is calculated. Moreover, according to the structural function of the separation process, the motion reliability based on the proxy model and the improved membership function is calculated. Finally, a series reliability model is established based on the unlocking process and the separation process to calculate the reliability of the whole machine. The reliability of the unlocking trigger device is analyzed by the proposed method. Results show that the proposed method is computationally efficient with the calculated reliability of 0.9987.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号