首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Simple synthetic approach to 6-oxa steroids. Synthesis of 6-oxa-5beta;-pregnane-3,20-dione
【24h】

Simple synthetic approach to 6-oxa steroids. Synthesis of 6-oxa-5beta;-pregnane-3,20-dione

机译:6-氧杂类固醇的简单合成方法。6-氧杂-5β-孕甾烷-3,20-二酮的合成

获取原文
获取外文期刊封面目录资料

摘要

J. CHEM. SOC. PERKIN TRANS. 1 1995 Simple synthetic approach to 6-oxa steroids. Synthesis of 6-oxa-5P-pregnane-3,20mdione Daniel Nicoletti, Albert0 A. Ghini, Adriana L. Brachet-Cota and Gerard0 Burton * Departamento de Quimica Organica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellh 2, Ciudad Universitaria, (1428)Buenos Aires, Argentina A two-step synthesis of 19-functionalized 6-oxapregnanes from a 5a,6P-dihydroxypregnane is described. Deoxygenation at C-19 afforded a 6-oxapregnane, which was converted into 6-oxa-5 P-pregnane-3,20-dione 7.An insight into the mechanism of formation of the key intermediate, a 5,6-secosteroid, via a hypoiodite type reaction is also given. The synthesis of heterocyclic steroids, is of special interest in view of their physiological properties and the claim that certain heterosteroids possess anabolic, antihormonal, anti- hypercholesterolaemic, vasodilatatory, anticancer, neuro-muscular-blocking, central nervous system depressant and antimicrobial activities.Several patents also describe the pharmacological utility of these compounds. In spite of their significant biological activity, there are few reported syntheses of oxa steroids. Suginome et ul. have reported the partial and total synthesis of various mono- and dioxa ~teroids.~ The key step in these partial syntheses was a p-scission of the alkoxyl radicals generated from steroidal alcohols or lactols derived from cyclic ketones, uiu irradiation of their hypoiodites, to give the corresponding secosteroidal iodoformates.The latter were then converted into the hetero- steroids. In particular, few methods are available for the preparation of 6-oxa steroids besides those mentioned above. A major route is based on the Torgov's carbocyclic total steroid synthesis for the preparation of 6-aza-, oxa- and thia-estrane~.~.~ Two other methods have been described starting from steroidal precursors with moderate overall The photochemical reaction of 3p-acetoxy-Sa,6p-dihydr-oxypregnan-20-one la with mercury(r1) oxide and iodine has la R=O 2a R=O lb R=H,OAc 2b R =H, OAC been described by us to afford in high yield the secosteroid 2a.' This compound has structural features that indicate it would be a suitable precursor for 19-functionalized 6-oxa steroids.Results and discussion Scheme 1 outlines the synthesis of the title compound 7 from diol lb. This diol can be easily prepared from pregnenolone acetate in ca. 70 yield. Treatment of diol lb with mercury(I1) oxide-iodine (HgO-I,) in carbon tetrachloride under photo- lytic conditions (3 h, 300 W tungsten lamp) as previously described by us,* afforded the key intermediate, secosteroid 2b. Reaction of the latter compound with sodium borohydride in ethanol gave in a single step the 5PH-6-oxa steroid 3, as the sole cyclization product in 50 yield from lb (see below). vOAc ACO-0' H I iv+ vo bsol;/OR 7 5 R=Ac vL 6 R=H Scheme 1 Reagents und conditions: i, HgO, I,, CCI,, ho; ii, NaBH,, EtOH; iii, DBU, CS,, CH,I, DMF; iv, Bu,SnH, xylene, reflux; v, LAH, diethyl ether; vi, PCC, BaCO,, molecular sieves (3 A), CH,Cl, Deoxygenation of the primary (neopentylic) hydroxy group attached at C-10 in compound 3, was attempted by different methods, ranging from the direct or indirect (via iodine) reductive removal of a tosyloxy or mesyloxy group' to the widely used radical deoxygenation procedures.".' In spite of the more complicated work-up procedure, the best yield was attained with the thermally initiated Barton reduction of the dithiocarbonate intermediate 4 with tributyltin hydride which is particularly suitable in the case of sterically hindered primary alcohols.Further deacetylation with lithium aluminium hydride and oxidation with pyridinium chlorochromate yielded 6-oxa-SP-pregnane-3,20-dione7in 18 yield from lb.After the usual work-up, 7 was purified by flash chromatography and its identity confirmed by 'H and I3C NMR spectroscopy. Formation of secosteroid 2b In a previous publication,' we proposed a mechanism for the cleavage reaction of steroidal 5a,6P-diols leading to 5,6-secosteroids like 2a and 2b. We now present experimental evidence for this mechanism. TLC analysis of the reaction mixture of diol lb with HgO-I, at different times, revealed the presence of two compounds that were formed transiently. When the reaction was carried out with bis(acetoxy)iodobenzene- 1090 iodine l3 in carbon tetrachloride or dichloromethane the major product was coincident by TLC with one of the transient species detected in the HgO-I, reaction.This product was identified by 'H and 13C NMR and mass spectroscopy as 3P,20P-bis(acetoxy)-5a-hydroxy-6P,19-epoxypregnane 8. The diagnostic signals in the 'H NMR spectrum were those assigned to the 19-H, (6 3.78 and 3.86, both doublets, J,,, 8.7 Hz) and 6-Ha (6 3.71, d, J 3.1 Hz). The 13C NMR and mass spectra also agreed with the proposed structure. When compound 8 was allowed to react under the photolytic conditions used before (HgO-I,, CCl,, hv) the secosteroid 2b was isolated after a shorter reaction time (2 h); this provided conclusive evidence that compound 8 was a true reaction intermediate. On the other hand, when the reaction of 8 with HgO-I, was stopped after only 1 h, another product was detected by TLC (coincident with the second transient species observed previously).After work-up and flash chromatogra- phy, we isolated this intermediate species which was identified by 'H and I3C NMR and mass spectroscopy as the seco-lactol9. Formation of 8 and 9 from lb can be explained by the sequence depicted in Scheme 2, where the initially formed vOAc 1 hv .34 -- AcO I OH 6. 8 + . . J. CHEM. SOC. PERKIN TRANS. 1 1995 Table 1 Calculated and observed vicinal coupling constants for relevant hydrogens in ring A of 5-HB-oxa steroid 3 Dihedral angle H,H (deg) 3JH-H(obs.)/Hz 3JH-,(calc.)/Hz 3a,4a 47.39 3.2 3.5 3a,4P -67.39 ca. 2.5 2.9 4a,5P -162.68 12.5 10.1 4p,5p -48.21 5.2 5.9 From PM3 calculations.decoupled and DEPT). The 'H NMR spectra presented a singlet for one angular methyl at 6 0.70 (13-H3C) and a doublet for the 20-H3C at 6 1.25 as well as singlets for the two acetoxy groups. The protons on C-19 appeared as an AB quartet at 6 3.51 and 4.02 (J,,, 11 Hz). The 5-H6 resonance was observed at 6 4.15 as a double doublet and the 3-Ha appeared as an unresolved multiplet at 6 5.19. The 13C NMR spectrum of 3 gave conclusive evidence on the structure of this compound. Only 20 resonances were observed (besides those of the acetyloxy groups). Five carbon resonances (two methylene and three methines) assigned to C-3, -5, -7, -1 9 and -20 were observed in the range 6 64.2 to 72.7, typical of oxygen bonded carbons.Two methyl carbon resonances appeared at 6 12.8 (C-18) and 19.9 (C-21). The assignment of the absolute configuration at C-5 in compound 3 was deduced from its 'H NMR spectrum, based on the coupling constants between 5-H and the hydrogens at position 4 and, of the latter hydrogens with 3-Ha (position 3 had a fixed configuration throughout the synthetic transform- ations). The primary evidence of an A/B cis fusion, was given by the resonance of 3-H, which appeared as a broad signal (W1,, 9.1 Hz) typical of an equatorial hydrogen. The axial hydrogen at position 4, identified by its large coupling constant with 5-H (also axial), was clearly visible at 6 2.30 as a double double doublet; the other couplings observed for the axial 4-H were the geminal coupling (13.8 Hz) and a 3.2 Hz coupling with 3-H which corresponded to an axial-equatorial J.This arrange- ment, only possible in an A/B cis steroid, had J values which agreed with those calculated using the Altona equation l5 forbsol; voActhe steroid in which the configuration was 5-HB (Table 1). AcOJif? bH1I2 9 2b Scheme 2 5a-hydroxy-6,19-epoxy steroid 8 reacts further by formation of the 5-oxyl radical and cleavage of the 5,6 bond. The carbon radical formed can be oxidized further by the HgO-I, system,14 yielding an oxyl-radical which upon work-up gives seco-lactol 9. The course of the reaction continues with the cleavage of the 6,7 bond and the formation of a methylene radical which is finally trapped by iodine affording secosteroid 2b.Stereochemistry of the reductive cyclization of secosteroid 2b The structure of the oxa steroid 3 and its stereochemistry at position 5 were confirmed by 'H and NMR (proton Final confirmation of the stereochemistry at C-5 was carried out on compound 5 based on the NOESY spectrum, as all the oxapregnanes synthesized had identical configuration at this position. This experiment gave us clear evidence of the cis-fusion of rings A and B, showing strong NOESbetween 5-H and the hydrogens of the 10-methyl group and between 4-Ha and 7-Ha (Fig. 1). The closure of secosteroid 2b to the usually less stable cis-juncture of the A/B rings in oxa steroid 3, prompted us to analyse by molecular modelling using the PM3 semiempirical method, the two possible ring A conformations of the inter- mediate 19-hydroxy secosteroid for each of the rotamers around the C(9tC(l0) bond (Table 2).$ Fig.2 shows the two most stable conformers found, which have ring A in a conformation analogous to that found in SP-steroids (i.e. 'CJ in agreement with the NMR data for 2b (i.e. 3-H resonance observed as a broad signal with W1,, 9 Hz). These conformers, have the rest of the steroid moiety (rings C, D and side chain) bound to C-10 in an axial orientation blocking attack of the hydride from the a face on C-5, thus reduction yields stereoselectively the 5a-alcohol (probably with participation of the 19-hydroxy group) which cyclizes to the oxa steroid 3 with the 5-HD configuration.t Diol lb dissolves only with difficulty in CCl, (especially if it has been recrystallized); the use of CH,Cl, allowed us to work in more $ Conversion of the 19-formate to the 19-hydroxy secosteroid takes concentrated solutions and did not alter the course of the reaction. place in the first stages of the reaction with sodium borohydride. J. CHEM.SOC. PERKIN TRANS. 1 1995 Table 2 Relative energies of the possible conformations of the 19-hydroxy analogue of secosteroid 2b, from PM3 calculations (AMPAC4.5) C( 19)-C( lOamp;C(9tH(9) Relative energy Ring A conformation (deg) (kcal mol-')" 177.33 0.00lc4'c4 34.30 0.84 -39.31 2.81 145.50 10.70 55.36 1.65 -82.49 4.41 1 ~al= 4.184 J 0 NOE Fig.1 Observed NOESon 6-oxa-5P-pregnane 5 Conclusions In conclusion, a simple method for the conversion of a 5a,6P- steroidal diol into 19-functionalized 6-oxa steroids with a cis A/B fusion, is described based on the stereospecific reductive cyclization of iodo secosteroid 2b. Deoxygenation at position 19 using the Barton procedure affords 10-Me oxa steroids. The synthesis of the 6-oxa analogue of 5P-pregnane-3,20-dione has been achieved by this procedure. Experimental Mps were taken on a Fisher-Johns apparatus and are uncor- rected. IR spectra were recorded in KBr pellets or thin films using KBr disks on a Nicolet Magna IR 550 FT-IR spectro- meter. 'H and I3C NMR spectra were measured at 200.13 and 50.32 MHz in a Bruker AC-200 NMR spectrometer in deuteriochloroform (using tetramethylsilane as internal stand- ard).J Values are given in Hz. Electron impact mass spectra (EI) were measured in a VG Trio 2 mass spectrometer at 70 eV by direct inlet. FAB mass spectra and electron impact high resolution mass spectra (HRMS) were obtained in a VG ZAB BEQQ mass spectrometer. Semiempirical calculations were performed with AMPAC 4.5 (Semichem, USA). All solvents used were reagent grade. Solvents were evaporated at ca. 45 "C under reduced pressure. 3P,20P-Diacetoxy-5a,6P-dihydroxypregnanelb was pre-pared from pregnenolone (3 P-hydroxypregn-5-en-20-one)ace-tate in 70 yield, as a single product, by reduction with sodium cyanoborohydride in methanol to the 20-alcohol followed by acetylation, epoxidation with rn-chloroperbenzoic acid and acid hydrolysis of the epoxide mixture with tetrahydrofuran and aqueous sulfuric acid.* 3p,20p-Bis(acetoxy)-19-forrnyloxy-7-iodo-6nor-5,7-seco-pregnan-5-one 2b To a solution of diol lb (0.400 g, 0.92 mmol) in freshly distilled carbon tetrachloride (66 cm3) were added mercury(I1) oxide (2.06 g, 9.51 mmol) and iodine (3.16 g, 12.5 mmol). The solution was then irradiated with a 300 W tungsten lamp (5000 lm) for 3.5 h while being vigorously stirred at room temperature. After filtration the solution was diluted with dichloromethane, 1091 I Fig. 2 Most stable conformers of the 19-hydroxy analogue of secosteroid 2b as predicted by PM3 calculations (see Table 2) washed with aqueous sodium thiosulfate and water, dried and then evaporated to dryness, yielding crude secosteroid 2b (0.5 17 g, 98).This product could not be crystallized,sect; an analytical sample was purified by preparative TLC (hexane-ethyl acetate 7: 3); v,,,(KBr)/cm-' 1728 (C4, esters), 1704 (C=O, ketone), 1438 (CH2-I), 1247 (C-0, acetate), 1163 (C-0, formate), 1028 and 1021; dH0.70 (3 H, s, 13-H3C), 1.15 (3 H, d,J 6, 20-H3C), 2.02 (3 H, s, acetate), 2.03 (3 H, s, acetate), 2.58 (1 H, br d, Jgem 15.0, 4-Ha), 3.13 (1 H, dd, J7a,8 2.7, Jgem10.9, 7-Ha), 3.39 (1 H, dd, J,,,, 1.9, Jgem10.9, 7-Hb), 3.63 (1 H, dd, J,,*3 4.3, J,,, 15.0, 4-HB), 4.31 (1 H, d, Jgem11.8, 19-Ha), 4.52(1 H, d, J,,, 11.8, 19- Hb),4.83(1H,m,20-H),5.41(1H,brs,3-H)and8.l1(1H,s, formate);amp; 13.2 (C-lE), 17.2 (C-7), 19.7 (C-21), 21.2 (acetate), 21.4 (acetate), 23.2 (C-I1 TI), 23.4 (C-151), 24.8 (C-167), 25.0 (C-1 TI), 28.8 (C-2), 37.6 (C-9), 38.9 (C-12), 40.0 (C-8), 41.6 (C- 13), 41.2 (C-4), 53.7 (C-lo), 54.7 (C-14), 54.8 (C-17), 64.7 (C-19), 72.5 (C-3), 72.5 (C-20), 160.7 (formate), 170.1 (acetate), 170.2 (acetate) and 212.2 (C-5); m/z (FAB, 3-nitrobenzyl alcohol) 577 (M + 1, 36), 517 (M + 1 -AcOH, 92), 457 (M + 1 -2AcOH, 54), 389 (M + 1 -HI, 52), 373 (55) and 303 (100) (Found M -HOAc, 516.1359.C23H33051 requires M, 516.1372; Found: M -HOAc -HI, 388.2248. Camp;32O, requires M, 388.2249). 3p,20p-Bis(acetoxy)-19-hydroxy-amp;ox a-5 p-pregnane 3 To a solution of the crude secosteroid 2b (0.5 g) in absolute ethanol (67 cm3) cooled to OOC, was added sodium borohy- dride (0.123 g, 3.21 mmol).The solution was stirred at 0 "C for 2 h and then at room temperature for another 2 h, acidified (pH 5-6) with hydrochloric acid (1 mol dm-3), and then neutralized with 10 aqueous sodium hydrogen carbonate. The solution was concentrated under reduced pressure to a volume of 25 cm3, diluted with water and extracted with diethyl ether. The extract was washed with water, dried and then evaporated to dryness. Chromatography on silica gel with ethyl acetate- hexane as eluent yielded 19-hydroxy oxasteroid 3 (0.190g, 52) 0 Attempts to recrystallize this compound were unsuccessful due to its instability.7 Assignments may be interchanged. homogeneous by TLC; v,,,(KBr)/cm-' 3443 (OH), 1734 (C=O), 1244 (C-0), 1151, 1070, 1047 and 1028; SH0.70 (3 H, s, 13-H3C), 1.15 (3 H, d, J6.0, 20-H3C); 2.01 (3 H, s, acetate), 2.05 (3 H, s, acetate), 2.30 (1 H, ddd, J4a,3 12.5, J,,,3.2, J4a,5 13.8, 4-Ha), 3.34(1 H, t, Jgem-J7aq8 11.5, 7-Ha), 3.51 (1 H, d, J.CHEM. SOC. PERKIN TRANS. 1 1995 successively with ethyl acetate and 10 aqueous hydrochloric acid. The aqueous layer was extracted with ethyl acetate and the combined organic extracts were washed with aqueous sodium hydrogen carbonate and water, dried and then evaporated to dryness, yielding diol6 (0.075 g, 95); SH0.77 (3 H, s, l3-H3C), Jq,,I1.O, 19-Ha),3.57(1H,dd,J7~,~5.2,Jg,,11.5,7-Ha),4.02(l H, d, Jgem11.0, 19-Hb), 4.15 (1 H, dd, J5,4' 5.2, J5,4a 12.5, 5-H'); 4.83 (1 H, m, 20-H) and 5.19 (1 H, br s, 3-H); 6, 12.8 (C-18), 19.9(C-21), 20.2 (C-1 l), 21.3 (acetate), 21.5 (acetate), 22.9 (C-1), 23.3 (C-l5), 24.1 (C-16), 25.7 (C-2), 27.8 (C-4), 34.7 (C-8), 38.4 (C-9), 39.1 (C-lo), 39.5 (C-12), 42.8 (C-13), 52.3 (C-14), 54.5 (C-l7), 64.2 (C-l9), 66.7 (C-7), 70.5 (C-5), 71.4 (C-3), 72.7 (C-20), 170.4 (acetate) and 170.5 (acetate); m/z (FAB, 1-sulfanylglycerol) 423 (M + 1,15), 363 (M + 1 -AcOH, 49), 36 1 (40), 345 (20), 33 1 (22), 303 (19), 285 (1 8), 27 1 (15), 267 (1 5) and 91 (100).Acetylation with Ac,O-pyridine gave the 19- acetate, mp 162-163 "C (from acetone-hexane) (Found: C, 67.2; H, 8.7. C26H4007 requires C, 67.2; H, 8.7). 3p,ZOp-Bis(acetoxy)-6-oxa-5 p-pregnane 5 6-Oxapregnane 3 (0.3 g, 0.71 mmol) and 1,8-diazabicyclo- C5.4.01undec-7-ene (0.434 g, 2.84 mmol) were dissolved in dry N,N-dimethylformamide (3.6 cm3). Carbon disulfide (4.0 cm3) was added and the reaction mixture was stirred for 45 min at room temperature.After addition of methyl iodide (7.8 cm3) stirring was continued for a further 45 min at room temperature and the reaction mixture was then evaporated. The residue was diluted with water and extracted with ethyl acetate. The organic layer was washed with saturated aqueous sodium chloride, dried and then evaporated to dryness. Chromatography on silica gel with ethyl acetate-hexane as eluent yielded 3p, 20 P-bis(acetoxy)- 19-(methylsulfanylthiocarbonyloxy)-6-oxa-5p-pregnane 4 (0.256 g, 70); SH0.67 (3 H, s, 13-H3C), 1.15 (3 H, d, J6.0, 20-H3C), 2.00 (3 H, s, acetate), 2.04 (3 H, s, acetate), 2.35 (I H, ddd, J4a.3 3.0, J4a,5 12.1, J,,, 14.7, 4-Ha), 2.58 (3 H, S, SCH,), 3.33 (1 H, t, Jgem-J7a,8 11.4, 7-Ha), 3.60(1 H,dd,J,P,8 4.9, J,,, 11.4, 7-HD),4.14(1 H,dd, J5,4D4.8, J5,4a 12.1, 5-HP), 4.78 (1 H, d, J,,, 10.9, 19-Ha), 4.86 (1 H, d, J,,, 19-Hb), 4.83 (1 H, m, 20-H) and 5.21 (1 H, br s, 3-H).Tributyltin hydride (1.082 g, 3.35 mmol) in xylene (1 6 cm3) was added during 2 h to the dithiocarbonate 4 (0.240 g, 0.47 mmol) in xylene (16 cm3) at 150 "C under nitrogen. After heating for a further 14 h, the solvent was evaporated and the residue was partitioned between hexane (100 cm3) and aceto- nitrile (100 cm3). The acetonitrile layer was separated and washed with hexane (3 x 50 cm3) and evaporated to dryness. Chromatography on silica gel with ethyl acetate-hexane as eluent yielded oxapregnane 5 (0.121 g, 63.5); mp 114115 "C (from ethanol-water) (Found: C, 70.6; H, 9.4.C24H3805 requires C, 70.9; H, 9.4); v,,,(KBr)/cm-' 1734 (C=O), 1254 and 1238 (C-0), 1191,1162,1089,1078 and 1034; BH 0.65 (3 H, s, 13-H3C), l.l'1(3H,s, lo-H,C), 1.15(3H,d,J6,20-H3C),2.01 (3 H, s, acetate), 2.04 (3 H, s, acetate), 2.32 (I H, ddd, J4a.33.1, J4a,5 12.4,J,,, 13.5, 4-Ha), 3.30 (1 H, t, Jgem-JTa,8 11.2,7-H"), 3.56(1H,dd,J7p,~5.0,Jg,,11.2,7-HB),3.69(1H,dd,J5,4B4.9, 1.1 1 (3 H, s, 10-H3C); 1.14 (3 H, d, J 6, 20-H3C), 2.32 (1 H, ddd, J4a,3 3.1, J4a,5 12.2, Jgem 13.4, 4-Ha), 3.31 (1 H, t, J,,, -J7a,8 11.4, 7-Ha), 3.56(1 H,dd, J7P,8 5.l,Jgem 11.4, 7-HP), 3.72(1 H, m,20-H)3.79(1 H,dd, J5,4B4.8, 12.2, 5-HB)and4.26(1 H, J5,4a br s, 3-H).Pyridinium chlorochromate (0.38 g, 1.76 mmol), barium carbonate (0.22 g, 1.13 mmol) and 3 8, molecular sieves (0.15 g) in dry dichloromethane (2.0 cm3) were vigorously stirred at room temperature for 20 min and then the diol6 (0.068 g, 0.21 mmol) in dry dichloromethane (3.0 cm3) was added. After a further 4 h, the reaction mixture was diluted with diethyl ether, percolated through Florisil, eluting with diethyl ether and dichloromethane and then evaporated to dryness. Chromato- graphy on silica gel with ethyl acetate-hexane as the eluent yielded diketone 7 (0.054 g, 80); mp 153-154 "C (from diisopropyl ether) (Found: C, 75.2; H, 9.8.C20H3003 requires C, 75.4; H, 9.5); v,,,(KBr)/cm-' 1716 and 1709 (GO) and 1077 (C-0-C); 6, 0.67 (3 H, S, 13-H,C), 1.16 (3 H, S, 10-H,C); 2.13 (3 H, s, 20-H3C), 2.41 (1 H, ddd, 4J4e,2s 1.9, J4B,5 5.6, Jgem14.7, 4-HP), 3.05 (1 H, dd, Jaa,5 11.4, J,,, 14.7, 4-Ha), 3.35 (1 H, t, J,,, -J7a,8 11.5, 7-Ha), 3.67 (1 H, dd, J7P,8 5.1, J,,, 11.5,7-HP)and3.71 (1 H,dd, J5,4D5.6, J5,4a11.4,5-HB);6, 13.5 (C-l8), 20.4 (C-11), 21.8 (C-19), 23.3 (C-l5), 23.6 (C-16), 31.5 (C-21), 31.9 (C-l), 34.6 (C-8), 35.2 (C-lo), 36.4 (C-2), 38.8 (C-12), 39.5 (C-9), 40.7 (C-4), 44.4 (C-13), 52.6 (C-14), 63.1 (C-17), 64.8 (C-7), 79.7 (C-5), 208.9 (C-20) and 209.8 (C-3); m/z (EI) 318 (M+,34),300(M -H20,76), 261 (13), 248 (lo), 233 (12), 215 (8), 55 (49) and 43 (100).3~,20~-Bis(acetoxy)-5a-hydroxy-6p,l9-epoxypregnane8 A solution of diol lb (0.100 g, 0.23 mmol) in freshly distilled carbon tetrachloride (21 cm3) containing bis(acetoxy)iodo- benzene (0.084 g, 0.25 mmol) and iodine (0.063 g, 0.25 mmol) was irradiated with a 300 W tungsten lamp for 85 min at room temperature. The reaction mixture was then poured into water and extracted with diethyl ether. The organic layer was washed successively with sodium thiosulfate and water, dried and then evaporated to dryness. Chromatography on silica gel with ethyl acetate-hexane as eluent yielded hydroxy ether 8 (0.070 g, 70); mp 201-203 "C (from acetone) (Found: C, 69.2; H, 9.07. C25H3806 requires C, 69.09; H, 8.81); v,,,(KBr)/cm-' 3423 (OH), 1728 (GO), 1240 (C-0, acetate), 1078,1039 and 1023;SH 0.67 (3 H, s, 13-H3C), 1.14 (3 H, d, J 6, 20-H3C), 2.01 (3 H, s, acetate), 2.04 (3 H, s, acetate), 3.71 (1 H, d, J6a,73.1, 6-Hu), 3.78 (1 H,d, Jg,,8.7, 19-Ha),3.86(1 H,d, Jqem8.7, 19-Hb),4.87(1 H, m, 20-H)and4.99(1 H,m, 3-H);SC12.8(C-18), 19.8(C-21), 21.3 (acetate), 21.4 (acetate), 22.1 (C-1 l), 23.5 (C-16 y), 23.6(C-15 I), 25.4 (C-7), 27.1 (C-2), 31.0 (C-1), 33.0 (C-8), 38.6 (C-127), 39.2 (C-47), 42.9 (C-l3), 44.1 (C-10) 44.4 (C-9), 54.0 (C-14), 54.9 (C-l7), 68.8 (C-19), 69.8 (C-3), 72.8 (C-20), 76.9 (C-5), 81.3 J5,,a12.4,5-HP),4.83(lH,m,20-H)and5.20(lH,brs,3-H);6,(C-6), 170.1 (acetate) and 170.4 (acetate); m/z (FAB 1-12.7 (C-18), 20.0 (C-19), 20.5 (C-11), 21.4 (acetate), 21.5 (acetate), 22.8 (C-21), 23.4 (C-15), 24.5 (C-16), 25.8 (C-2), 29.3 (C-1), 28.0 (C-4), 34.7 (C-8), 35.5 (C-lo), 38.8 (C-9), 39.3 (C-12), 42.8 (C-13), 51.7 (C-14), 54.7 (C-17), 64.8 (C-7), 71.1 (C-3), 72.8 (C-20), 76.5 (C-5), 170.4 (acetate) and 170.5 (acetate); mjz (EI) 346 (M' -AcOH, loo), 331 (17), 271 (8.6), 111 (30) and 43 (68).6-Oxa-Sp-pregnane-3,20-dione 7 The diacetate 5 (0.1 g, 0.25 mmol) in dry diethyl ether (9.5 cm3) was stirred with lithium aluminium hydride (0.1 g, 2.6 mmol) for 6 h under nitrogen. The reaction mixture was treated sulfanylglycerol) 433 (M -1, 9.573, 375 (27), 373 (M -1 -AcOH, 35), 3 16 (19), 3 15 (83), 3 13 (22), 297 (43), 267 (19.5) and 121 (100). 3p,20p-Bis(acetoxy)-6a-hydroxy-6p,19-epoxy-5,6-seco-pregnan-5-one 9 To a solution of hydroxy ether 8 (0.174 g, 0.41 mmol) in freshly distilled carbon tetrachloride (28 cm3) were added HgO (0.890 g, 4.I 1 mmol) and I, (1.33 g, 5.26 mmol). The solution was then irradiated with a 300 W tungsten lamp for 1 h while being vigorously stirred at room temperature. After filtration, the solution was diluted with dichloromethane, washed with J. CHEM. soc. PERKIN TRANS. I 1995 aqueous sodium thiosulfate and water, dried and then evap- orated to dryness. Chromatography on silica gel with ethyl acetate-hexane as eluent yielded lactol 9 (0.021 g, 1l), an analytical sample was purified by preparative TLC (hexane- ethyl acetate 1 :1) (Found: M -AcOH -H20, 372.2297. C23H3204 requires M, 372.2301; Found: M -AcOH -HCOH, 360.2295.C22H320, requires M 360.2301); vmax-(film)/cm-' 3435 (OH), 1728 (Ck-0, acetate), 1668 (C=O, ketone), 1246 (C-0, acetate) and 1026 (C-0-C); amp;,0.62 (3 H, S, 13-H3C), 1.14 (3 H, d, J 6, 20-H3C), 1.99 (3 H, S, acetate), 2.04 (3 H, s, acetate), 2.43 (1 H, dd, J4a,38.7, Jgem 16.8, 4-Ha), 2.69 (1 H, dd, J4b.3 5.6, J,,, 16.8, 4-Hb), 3.59 (I H, d, Jgem13.0, 19-Ha), 3.83 (1 H, d, Jgem13.0, 19-Hb), 4.83 (lH,m,20-H),5.05(1 H,m,3-H)and5.14(1H,dd,J6,,,5.1, J6.7b 9.2, 6-H); 6, 12.1 (C-18), 19.7 (C-21), 20.9 (C-ll), 21.1 (acetate), 21.4 (acetate), 24.1 (C-l5), 24.7 (C-16), 25.5 (C-1 TI), 25.8 (C-27), 32.7 (C-8), 38.4 (C-12), 39.1 (C-7), 41.6 (C-13), 45.0 (C-4) 50.4 (C-9), 54.3 (C-14), 54.9 (C-17), 56.4 (C-lo), 62.5 (C-19), 69.8 (C-3), 72.5 (C-20), 95.6 (C-6), 170.1 (acetate), 170.4 (acetate) and 21 1.O (C-5); m/z (EI) 372 (M' -AcOH -HZO, 8.6), 360 (M -AcOH -HCOH, 25), 342 (9,161 (21), 126 (26), 125 (29), 109 (40) and 43 (100).Acknowledgements We thank the Universidad de Buenos Aires and CONICET (Argentina) for financial support of this work. A. A. G. is grateful to CONICET for a fellowship. References 1 S. R. Ramadas and J. Radhakrishnan, J. Sci. Ind. Rex, 1972,31,14.5. 2 See for example: A. D. Cross, F. A. Kincl and A. Bowers, USP 3 1.50 140/1964 (Chem. Abstr., 1964,61, 16131f). 3 H. Suginome and T. Kondoh, J. Chem. Soc., Perkin Trans. I, 1992, 31 19 and references cited therein. 4 H. 0.Huisman, Angew. Chem., Int. Ed. Engl., 1971,10,4.50. 5 S. N. Ananchenko and I. V. Torgov, Tetrahedron Lett., 1963, 1553. 6 W. N. Speckamp and H. Kesselaar, Tetrahedron Lett., 1974,3405. 7 T. L. Jacobs and R. B. Brownfield, J. Am. Chem. SOC.,1960, 82, 4033. 8 A. L. Brachet-Cota and G. Burton, Z. Naturforsch., Teil. B, 1988,43, 491. 9 Y. Fujimoto and T. Tatsuno, Tetrahedron Lett., 1976, 3325. 10 W. Hartwig, Tetrahedron, 1983, 39, 2609 and references cited therein. 11 D. H. R. Barton, D. 0.Jang and J. Cs. Jaszberenyi, J. Org. Chem., 1993,58,6338. 12 D. H. R. Barton, W. B. Motherwell and A. Stange, Synthesis, 1981, 743. 13 P. de Armas, J. J. Concepcion, C. G. Francisco, R. Hernandez, J. A. Salazar and E. Suarez, J. Chem. SOC.,Perkin Trans. I, 1989, 405. 14 H. Suginome and S. Yamada, J. Org. Chem., 1984,49,3753. 15 C. A. G. Haasnoot, F. A. A. M. de Leeuw and C. Altona, Tetrahedron, 1980,36, 2783. Paper 4/0767 1K Received 16th December 1994 Accepted 9th January 1995
机译:J. CHEM. SOC. PERKIN, TRANS. 1, 1995 6-氧杂类固醇的简单合成方法。6-氧杂-5P-孕烷-3,20m二酮的合成 Daniel Nicoletti, Albert0 A. Ghini, Adriana L. Brachet-Cota and Gerard0 Burton * Departamento de Quimica Organica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellh 2, Ciudad Universitaria, (1428)Buenos Aires, Argentina 描述了从5a,6P-二羟基孕甾烷合成19-官能化6-氧杂孕烷的两步法。C-19脱氧得到6-氧杂孕烷,其转化为6-氧杂-5对孕烷-3,20-二酮7.还通过次碘酸盐型反应深入了解了关键中间体5,6-secosteroid的形成机制。杂环类固醇的合成,鉴于其生理特性以及某些异类固醇具有合成代谢、抗激素、抗高胆固醇血症、血管舒张、抗癌、神经肌肉阻滞、中枢神经系统抑制剂和抗菌活性的说法,特别令人感兴趣。几项专利还描述了这些化合物的药理学效用。尽管它们具有显着的生物活性,但很少有关于氧甾体合成的报道。杉之女等。已报道了各种单噁胺和二噁胺~类化合物的部分和全部合成。~ 这些部分合成的关键步骤是将甾体醇或环酮衍生的乳醇产生的烷氧基自由基进行 p-剪切,对其次碘酸盐进行 uiu 辐照,得到相应的甾体碘甲酸酯。后者随后被转化为异类固醇。特别是,除了上述方法外,很少有方法可用于制备6-氧杂类固醇。一条主要路线是基于Torgov的碳环总类固醇合成,用于制备6-氮杂-氧杂-和硫杂-雌三烷~.~.~ 已经描述了另外两种方法,从甾体前体开始,总体中等 3p-乙酰氧基-Sa,6p-二氢-氧孕甾-20-酮 la 与氧化汞 (r1) 和碘的光化学反应有 la R=O 2a R=O lb R=H,OAc 2b R =H,我们描述了OAC以高产率提供secosteroid 2a。 该化合物的结构特征表明它是19-功能化6-氧杂类固醇的合适前体。结果与讨论 方案 1 概述了由二醇 lb 合成标题化合物 7。这种二醇可以很容易地从醋酸孕烯醇酮制备,收率约为70%。如我们之前描述的那样,在光解条件下(3小时,300 W钨灯)在四氯化碳中用氧化汞(I1)碘(HgO-I)处理二醇lb,*提供了关键的中间体,secosteroid 2b。后一种化合物与硼氢化钠在乙醇中的反应,一步得到5PH-6-oxa类固醇3,作为唯一的环化产物,产率为50%的lb(见下文)。vOAc ACO-0' H I iv+ vo \/OR 7 5 R=Ac vL 6 R=H 方案 1 试剂和条件:i、HgO、I、CCI、ho;ii, NaBH,, EtOH;III、DBU、CS、CH、I、DMF;iv、Bu、SnH、二甲苯、回流;v, LAH, 乙醚;vi,PCC,BaCO,,分子筛(3 A),CH,Cl,化合物3中连接在C-10上的初级(新戊酰)羟基的脱氧,尝试了不同的方法,从直接或间接(通过碘)还原去除甲苯磺酰氧基或甲苯氧基'到广泛使用的自由基脱氧程序。尽管后处理程序更为复杂,但用三丁基氢化锡对二硫代碳酸酯中间体 4 进行热引发的 Barton 还原获得了最佳收率,这特别适用于空间位阻伯醇的情况。用氢化铝锂进一步脱乙酰,用氯铬酸吡啶氧化,得到6-氧杂-SP-孕甾烷-3,20-二酮7in 18%的产率。在常规的后处理后,通过快速色谱法纯化7,并通过'H和I3C NMR波谱确认其身份。secosteroid 2b 的形成 在之前的出版物中,我们提出了甾体 5a,6P-二醇裂解反应导致 5,6-secosteroid 如 2a 和 2b 的机制。我们现在提出了这种机制的实验证据。对二醇lb与HgO-I在不同时间的反应混合物进行TLC分析,揭示了两种瞬时形成的化合物的存在。当用双(乙酰氧基)碘苯-1090碘l3在四氯化碳或二氯甲烷中进行反应时,TLC的主要产物与HgO-I反应中检测到的瞬态物质之一重合。经'H和13C NMR和质谱鉴定本品为3P,20P-双(乙酰氧基)-5a-羟基-6P,19-环氧孕甾烷8。'H NMR谱图中的诊断信号是分配给19-H(6 3.78和3.86,均为双峰,J,,, 8.7 Hz)和6-Ha(6 3.71,d,J 3.1 Hz)的信号。13C NMR和质谱也与所提出的结构一致。当化合物8在之前使用的光解条件(HgO-I,,CCl,,hv)下反应时,在较短的反应时间(2 h)后分离出secosteroid 2b;这提供了确凿的证据,证明化合物8是真正的反应中间体。另一方面,当8与HgO-I的反应仅在1小时后停止时,TLC检测到另一种产物(与先前观察到的第二种瞬时物质一致)。经过检查和快速色谱分析,我们分离出这种中间物种,通过'H和I3C NMR和质谱鉴定为seco-lactol9。lb 形成 8 和 9 可以用方案 2 中描述的序列来解释,其中最初形成的 vOAc 1 hv .34 --> AcO I OH 6.8 + ..J. 化学 SOC.PERKIN TRANS. 1 1995 表 1 5-HB-oxa 类固醇 3 环 A 中相关氢的计算和观测邻域耦合常数 H,H (deg) 3JH-H(obs.)/Hz 3JH-,(calc.)/Hz 3a,4a 47.39 3.2 3.5 3a,4P -67.39 ca. 2.5 2.9 4a,5P -162.68 12.5 10.1 4p,5p -48.21 5.2 5.9 根据 PM3 计算。'H NMR谱图显示,在6 0.70 (13-H3C)时,一个角甲基的单重态,在6 1.25时,20-H3C的双重态,以及两个乙酰氧基的单重态。C-19上的质子在6、3.51和4.02(J,,,11 Hz时以AB四重奏的形式出现。在6 4.15处观察到5-H6共振为双双峰,在6 5.19处观察到3-Ha共振为未分辨的多重共振。3的13C NMR谱图为该化合物的结构提供了确凿的证据。仅观察到 20 次共振(除了乙酰氧基的共振)。在6 64.2至72.7范围内观察到分配给C-3、-5、-7、-1、9和-20的五种碳共振(两种亚甲基和三种甲基),这是氧键碳的典型特征。在6 12.8 (C-18)和19.9 (C-21)出现两次甲基碳共振。化合物 3 中 C-5 位绝对构型的分配是根据其 'H NMR 谱图推导出的,基于 5-H 与位置 4 的氢之间的耦合常数,以及后一个位置具有 3-Ha 的氢之间的耦合常数(位置 3 在整个合成转化过程中具有固定构型)。A/B顺式聚变的主要证据是由3-H的共振给出的,它表现为赤道氢的典型宽信号(W1,,9.1 Hz)。位置 4 的轴向氢,通过其与 5-H(也是轴向)的大耦合常数来识别,在 6 2.30 处清晰可见为双双双峰;观察到的轴向 4-H 的其他偶联是双子耦合 (13.8 Hz) 和 3.2 Hz 与 3-H 的耦合,对应于轴向赤道 J.这种安排,仅在 A/B 顺式类固醇中可能,其 J 值与使用 Altona 方程 l5 for\ voActhe 类固醇计算的值一致,其中配置为 5-HB(表 1)。AcOJif?bH1I2 9 2b 方案 2 5a-羟基-6,19-环氧类固醇 8 通过形成 5-氧自由基和 5,6 键的裂解进一步反应。形成的碳自由基可以被 HgO-I 系统进一步氧化,14 产生氧自由基,经检查后产生 seco-lactol 9。反应过程继续,6,7键的裂解和亚甲基自由基的形成,最终被碘捕获,提供secosteroid 2b。secosteroid 2b 还原环化的立体化学 氧杂类固醇 3 的结构及其在位置 5 的立体化学通过 'H 和 NMR (质子 根据 NOESY 谱图对化合物 5 的立体化学进行了最终确认,因为所有合成的氧杂聚糖在该位置具有相同的构型。该实验为我们提供了环A和B顺式融合的明确证据,显示5-H和10-甲基的氢之间以及4-Ha和7-Ha之间有很强的NOES(图1)。secosteroid 2b 对 oxa 类固醇 3 中 A/B 环通常不太稳定的顺式连接的闭合,促使我们使用 PM3 半经验方法通过分子建模进行分析,中间 19-羟基 secosteroid 的两种可能的环 A 构象,用于 C(9tC(l0) 键周围的每个旋转体(表 2).$ 图 2 显示了发现的两个最稳定的构象, 其环 A 的构象类似于 SP 类固醇中的构象(即 'CJ 与 2b 的 NMR 数据一致(即 3-H 共振观察到为 W1,9 Hz 的宽信号)。这些构象具有与C-10结合的其余类固醇部分(环C,D和侧链),以轴向方向阻断来自C-5上a面的氢化物的攻击,因此还原立体选择性地产生5a-醇(可能在19-羟基的参与下)环化为具有5-HD构型的oxa类固醇3.t Diol lb仅在CCl中溶解困难, (特别是如果它已被重结晶);CH,Cl的使用使我们能够在更多的$中工作 将19-甲酸酯转化为19-羟基类固醇需要浓缩溶液,并且不会改变反应过程。置于与硼氢化钠反应的第一阶段。J. CHEM.SOC. PERKIN 译.1 1995 表2 PM3计算得出的2b类固醇19-羟基类似物可能构象的相对能 (AMPAC4.5) C( 19)-C( lO&C(9tH(9) 相对能 环A构象(度) (kcal mol-')“ 177.33 0.00lc4'c4 34.30 0.84 -39.31 2.81 145.50 10.70 55.36 1.65 -82.49 4.41 1 ~al= 4.184 J 0 NOE 图1 6-氧杂-5P-孕烷的NOESon 5 结论 综上所述, 基于碘类固醇2b的立体特异性还原环化,描述了一种将5a,6-甾体二醇转化为具有顺式A / B融合的19-官能化6-氧杂类固醇的简单方法。使用 Barton 程序在第 19 位脱氧可提供 10-Me oxa 类固醇。5P-孕甾烷-3,20-二酮的6-氧杂类似物的合成是通过该程序实现的。实验 Mps 是在 Fisher-Johns 装置上进行的,并且未经校正。在Nicolet Magna IR 550 FT-IR光谱仪上使用KBr圆盘将红外光谱记录在KBr颗粒或薄膜中。'H 和 I3C NMR 波谱在 200.13 和 50.32 MHz 的频率下在布鲁克 AC-200 NMR 波谱仪中测量氘氯仿(使用四甲基硅烷作为内部标准)。J 值以 Hz 为单位。 电子冲击质谱 (EI) 在 VG Trio 2 质谱仪中以 70 eV 直接入口测量。在VG ZAB BEQQ质谱仪中获得FAB质谱和电子冲击高分辨率质谱(HRMS)。使用AMPAC 4.5(Semichem,USA)进行半经验计算。所有使用的溶剂均为试剂级。在减压下在约45“C下蒸发溶剂。3P,20P-二乙酰氧基-5a,6P-二羟基孕甾醇从孕烯醇酮(3-P-羟基孕甾-5-烯-20-酮)乙酸酯中以70%的收率制备,方法是用甲醇中的氰基硼氢化钠还原为20-醇,然后进行乙酰化、RN-氯过苯甲酸环氧化以及环氧化物混合物与四氢呋喃和硫酸水溶液的水解。 3P,20P-双(乙酰氧基)-19-苜蓿氧基-7-碘-6nor-5,7-seco-孕甾-5-酮 2b 到二醇lb(0.400g, 在0.92 mmol)的新鲜蒸馏四氯化碳(66 cm3)中加入氧化汞(I1)(2.06 g,9.51 mmol)和碘(3.16 g,12.5 mmol)。然后用300W钨丝灯(5000lm)照射溶液3.5小时,同时在室温下剧烈搅拌。过滤后,溶液用二氯甲烷稀释,1091 I 图2 PM3计算预测的19-羟基类似物的secosteroid 2b的最稳定构象(见表2),用硫代硫酸钠水溶液和水洗涤,干燥,然后蒸发至干,得到粗品secosteroid 2b(0.5 17 g,98%)。本品不能结晶,§ 分析样品用制备型TLC(己烷-乙酸乙酯7:3)纯化;v,,,(KBr)/cm-' 1728 (C4, 酯), 1704 (C=O, 酮), 1438 (CH2-I), 1247 (C-0, 乙酸盐), 1163 (C-0, 甲酸盐), 1028 和 1021;dH0.70 (3 H, s, 13-H3C), 1.15 (3 H, d,J 6, 20-H3C), 2.02 (3 H, s, 醋酸纤维), 2.03 (3 H, s, 醋酸纤维), 2.58 (1 H, br d, Jgem 15.0, 4-Ha), 3.13 (1 H, dd, J7a,8 2.7, Jgem10.9, 7-Ha), 3.39 (1 H, dd, J,,,, 1.9, Jgem10.9, 7-Hb), 3.63 (1 H, dd, J,,*3 4.3, J,,, 15.0, 4-HB), 4.31 (1 H, d, Jgem11.8, 19-Ha), 4.52(1 H,d,J,,, 11.8,19-H),4.83(1H,m,20-H),5.41(1H,brs,3-H)和8.l1(1H,s,甲酸盐);& 13.2 (C-lE), 17.2 (C-7), 19.7 (C-21), 21.2 (乙酸盐), 21.4 (乙酸盐), 23.2 (C-I1 TI), 23.4 (C-151), 24.8 (C-167), 25.0 (C-1 TI), 28.8 (C-2), 37.6 (C-9), 38.9 (C-12), 40.0 (C-8), 41.6 (C-13), 41.2 (C-4), 53.7 (C-lo), 54.7 (C-14)、54.8 (C-17)、64.7 (C-19)、72.5 (C-3)、72.5 (C-20)、160.7 (甲酸盐)、170.1 (醋酸盐)、170.2 (醋酸盐) 和 212.2 (C-5);m/z(FAB,3-硝基苯甲醇)577(M + 1,36%),517(M + 1 -AcOH,92),457(M + 1 -2AcOH,54),389(M + 1 -HI,52),373(55)和303(100)(M-HOAc,516.1359.C23H33051需要M,516.1372;发现:M -HOAc -HI,388.2248。C&32O,需要 M,388.2249)。3p,20p-双(乙酰氧基)-19-羟基-&氧-a-5对孕烷3向粗品secosteroid 2b(0.5g)在无水乙醇(67cm3)中的溶液冷却至OOC,加入硼氢化钠(0.123g,3.21mmol)。将溶液在0“C下搅拌2小时,然后在室温下再搅拌2小时,用盐酸(1mol dm-3)酸化(pH 5-6),然后用10%碳酸氢钠水溶液中和。将溶液减压浓缩至25cm3的体积,用水稀释并用乙醚萃取。将提取物用水洗涤,干燥,然后蒸发至干。以乙酸乙酯-己烷为洗脱剂的硅胶色谱法得到19-羟基草小行星3(0.190g,52%) 0由于其不稳定性,尝试重结晶该化合物未成功.7 分配可以互换。通过TLC均质;v,,,(KBr)/cm-' 3443 (OH)、1734 (C=O)、1244 (C-0)、1151、1070、1047 和 1028;SH0.70 (3 H, s, 13-H3C), 1.15 (3 H, d, J6.0, 20-H3C);2.01 (3 H, s, 乙酸盐), 2.05 (3 H, s, 乙酸盐), 2.30 (1 H, ddd, J4a,3 12.5, J,,,3.2, J4a,5 13.8, 4-Ha), 3.34(1 H, t, Jgem-J7aq8 11.5, 7-Ha), 3.51 (1 H, d, J.CHEM. SOC. PERKIN TRANS. 1 1995 先后用乙酸乙酯和10%盐酸水溶液。水层用乙酸乙酯萃取,合并的有机提取物用碳酸氢钠水溶液和水洗涤,干燥后再蒸发至干,得二醇6(0.075 g, 95%);SH0.77 (3 H, s, l3-H3C), Jq,,I1.O, 19-Ha),3.57(1H,dd,J7~,~5.2,Jg,,11.5,7-Ha),4.02(l H, d, Jgem11.0, 19-Hb), 4.15 (1 H, dd, J5,4' 5.2, J5,4a 12.5, 5-H');4.83 (1 H, m, 20-H) 和 5.19 (1 H, br s, 3-H);6、12.8 (C-18)、19.9(C-21)、20.2 (C-1 l)、21.3 (醋酸纤维)、21.5 (醋酸纤维)、22.9 (C-1)、23.3 (C-l5)、24.1 (C-16)、25.7 (C-2)、27.8 (C-4)、34.7 (C-8)、38.4 (C-9)、39.1 (C-lo)、39.5 (C-12)、42.8 (C-13)、52.3 (C-14)、54.5 (C-l7)、64.2 (C-l9)、66.7 (C-7)、70.5 (C-5)、71.4 (C-3)、72.7 (C-20)、170.4 (醋酸纤维) 和 170。5(醋酸纤维);m/z(FAB,1-硫基甘油)423(M + 1,15%),363(M + 1-AcOH,49),36 1(40),345(20),33 1(22),303(19),285(1 8),27 1(15),267(1,5)和91(100)。用Ac,O-吡啶乙酰化得到19-乙酸盐,熔点162-163“C(来自丙酮-己烷)(发现:C,67.2;H,8.7。C26H4007需要 C,67.2;H,8.7%)。将3p,ZOp-双(乙酰氧基)-6-氧杂-5对孕甾5,6-氧杂孕甾3(0.3g,0.71mmol)和1,8-二氮杂双环C5.4.01十一碳-7-烯(0.434g,2.84mmol)溶于干燥的N,N-二甲基甲酰胺(3.6 cm3)中。加入二硫化碳(4.0 cm 3),并将反应混合物在室温下搅拌45分钟。加入碘甲烷(7.8cm3)后,在室温下继续搅拌45分钟,然后蒸发反应混合物。残余物用水稀释,用乙酸乙酯萃取。有机层用饱和氯化钠水溶液洗涤,干燥后再蒸发至干。以乙酸乙酯-己烷为洗脱液的硅胶色谱法得到3p,20 P-双(乙酰氧基)-19-(甲硫基硫代羰氧基)-6-氧杂-5p-孕烷4(0.256g,70%);SH0.67 (3 H, s, 13-H3C), 1.15 (3 H, d, J6.0, 20-H3C), 2.00 (3 H, s, 醋酸酯), 2.04 (3 H, s, 醋酸酯), 2.35 (I H, ddd, J4a.3 3.0, J4a,5 12.1, J,,, 14.7, 4-Ha), 2.58 (3 H, S, SCH,), 3.33 (1 H, t, Jgem-J7a,8 11.4, 7-Ha), 3.60(1 H,dd,J,P,8 4.9,J,,, 11.4,7-HD),4.14(1 H,dd,J5,4D4.8,J5,4a 12.1,5-HP),4.78 (1 H,d,J,,, 10.9,19-Ha),4.86 (1 H,d,J,,, 19-Hb),4.83 (1 H,m,20-H)和5。21(1 H,br s,3-H)。在氮气下,在2 h内将三丁基氢化锡(1.082 g,3.35 mmol)的二甲苯(1 6 cm3)加入到二硫代碳酸锡4(0.240 g,0.47 mmol)的二甲苯(16 cm3)中。再加热14小时后,蒸发溶剂,将残留物分配在己烷(100cm3)和乙腈(100cm3)之间。分离乙腈层,用己烷(3×50cm3)洗涤,蒸发至干。以乙酸乙酯-己烷为洗脱剂的硅胶色谱法得到氧孕烷5(0.121g,63.5%);mp 114115 “C(来自乙醇-水)(发现:C,70.6;H, 9.4.C24H3805 需要 C, 70.9;H, 9.4%);v,,,(KBr)/cm-' 1734 (C=O)、1254 和 1238 (C-0)、1191、1162、1089、1078 和 1034;BH 0.65 (3 H, s, 13-H3C), l.l'1(3H,s, lo-H,C), 1.15(3H,d,J6,20-H3C),2.01 (3 H, s, 乙酸盐), 2.04 (3 H, s, 乙酸盐), 2.32 (I H, ddd, J4a.33.1, J4a,5 12.4,J,,, 13.5, 4-Ha), 3.30 (1 H, t, Jgem-JTa,8 11.2,7-H“), 3.56(1H,dd,J7p,~5.0,Jg,,11.2,7-HB),3.69(1H,dd,J5,4B4.9, 1.1 1 (3 H, s, 10-H3C); 1.14 (3 H, d, J 6, 20-H3C), 2.32 (1 H, ddd, J4a,3 3.1, J4a,5 12.2, Jgem 13.4, 4-Ha), 3.31 (1 H, t, J,,, -J7a,8 11.4, 7-Ha), 3.56(1 H,dd, J7P,8 5.l,Jgem 11.4, 7-HP), 3.72(1 H,m,20-H)3.79(1 H,dd,J5,4B4.8,12.2,5-HB)和4.26(1 H,J5,4a br s,3-H)。氯铬酸吡啶鎓(0.38 g,1.76 mmol)、碳酸钡(0.22 g,1.13 mmol)和3 8,分子筛(0.15 g)在室温下剧烈搅拌20 min,然后将二醇6(0.068 g,0.21 mmol)的干燥二氯甲烷(3.0 cm3)中加入。再过4小时后,将反应混合物用乙醚稀释,通过Florisil渗透,用乙醚和二氯甲烷洗脱,然后蒸发至干。以乙酸乙酯-己烷为洗脱液的硅胶色谱图得到二酮7(0.054g,80%);mp 153-154“C(来自二异丙基醚)(发现:C,75.2;H, 9.8.C20H3003 需要 C, 75.4;H, 9.5%);v,,,(KBr)/cm-' 1716 和 1709 (GO) 和 1077 (C-0-C);6, 0.67 (3 H, S, 13-H,C), 1.16 (3 H, S, 10-H,C);2.13 (3 H, s, 20-H3C), 2.41 (1 H, ddd, 4J4e,2s 1.9, J4B,5 5.6, Jgem14.7, 4-HP), 3.05 (1 H, dd, Jaa,5 11.4, J,,, 14.7, 4-Ha), 3.35 (1 H, t, J,,, -J7a,8 11.5, 7-Ha), 3.67 (1 H, dd, J7P,8 5.1, J,,, 11.5,7-HP)和 3.71 (1 H,dd, J5,4D5.6, J5,4a11.4,5-HB);6、13.5(C-l8)、20.4(C-11)、21.8(C-19)、23.3(C-l5)、23.6(C-16)、31.5(C-21)、31.9(C-l)、34.6(C-8)、35.2(C-lo)、36.4(C-2)、38.8(C-12)、39.5(C-9)、40.7(C-4)、44.4(C-13)、52.6(C-14)、63.1(C-17)、64.8(C-7)、79.7(C-5)、208.9(C-20)和209.8(C-3);m/z (EI) 318 (M+,34%),300(M -H20,76), 261 (13), 248 (lo), 233 (12), 215 (8), 55 (49) 和 43 (100).3~,20~-双(乙酰氧基)-5a-羟基-6p,l9-环氧孕烷8 二醇lb(0.100g,0.23 mmol)在含有双(乙酰氧基)碘-苯(0.084 g,0.25 mmol)和碘(0.063 g, 0.25 mmol)在室温下用300 W钨丝灯照射85分钟。然后将反应混合物倒入水中并用乙醚萃取。有机层依次用硫代硫酸钠和水洗涤,干燥后蒸发至干。以乙酸乙酯-己烷为洗脱剂的硅胶色谱法得到羟基醚8(0.070g,70%);mp 201-203“C(来自丙酮)(发现:C,69.2;H,9.07。C25H3806需要 C,69.09;H,8.81);v,,,(KBr)/cm-' 3423 (OH)、1728 (GO)、1240 (C-0, 醋酸盐)、1078、1039 和 1023;SH 0.67 (3 H, s, 13-H3C), 1.14 (3 H, d, J 6, 20-H3C), 2.01 (3 H, s, 乙酸盐), 2.04 (3 H, s, 乙酸盐), 3.71 (1 H, d, J6a,73.1, 6-胡), 3.78 (1 H,d, Jg,,8.7, 19-Ha), 3.86(1 H,d, Jqem8.7, 19-Hb), 4.87(1 H, m, 20-H) 和 4.99(1 H,m, 3-H);SC12.8(C-18), 19.8(C-21), 21.3 (醋酸纤维), 21. 4 (醋酸纤维), 22.1 (C-1 l), 23.5 (C-16 y), 23.6(C-15 I), 25.4 (C-7), 27.1 (C-2), 31.0 (C-1), 33.0 (C-8), 38.6 (C-127), 39.2 (C-47), 42.9 (C-l3), 44.1 (C-10) 44.4 (C-9), 54.0 (C-14), 54.9 (C-l7), 68.8 (C-19), 69.8 (C-3), 72.8 (C-20), 76.9 (C-5), 81.3 J5,,a12.4,5-HP),4.83(lH,m,20-H)和5.20(lH,brs,3-H);6,(C-6)、170.1(醋酸纤维)和170.4(醋酸纤维);m/z (FAB 1-12.7 (C-18), 20.0 (C-19), 20.5 (C-11)、21.4 (醋酸纤维)、21.5 (醋酸纤维)、22.8 (C-21)、23.4 (C-15)、24.5 (C-16)、25.8 (C-2)、29.3 (C-1)、28.0 (C-4)、34.7 (C-8)、35.5 (C-lo)、38.8 (C-9)、39.3 (C-12)、42.8 (C-13)、51.7 (C-14)、54.7 (C-17)、64.8 (C-7)、71.1 (C-3)、72.8 (C-20)、76.5 (C-5)、170.4 (乙酸纤维) mjz (EI) 346 (M' -AcOH, loo%)、331 (17)、271 (8.6)、111 (30) 和 43 (68)。6-氧杂-Sp-孕烷-3,20-二酮 7 将双乙酸酯5(0.1g,0.25mmol)在干燥的乙醚(9.5cm3)中与氢化铝锂(0.1g,2.6mmol)在氮气下搅拌6小时。将反应混合物处理硫基甘油)433(M-1,9.573,375(27),373(M-1-AcOH,35),3 16(19),3 15(83),3 13(22),297(43),267(19.5)和121(100)。 3p,20p-双(乙酰氧基)-6a-羟基-6p,19-环氧-5,6-seco-孕甾-5-酮 9 向羟基醚8(0.174克,0.41毫摩尔)在新鲜蒸馏的四氯化碳(28cm3)中的溶液中加入HgO(0.890克, 4.I 1 mmol)和I(1.33 g,5.26 mmol)。然后用300W钨丝灯照射溶液1小时,同时在室温下剧烈搅拌。过滤后,将溶液用二氯甲烷稀释,用J.I 1995硫代硫酸钠水溶液和水,干燥后蒸散至干。以乙酸乙酯-己烷为洗脱液的硅胶色谱法得到乳醇9(0.021g,1l%),分析样品通过制备型TLC(己烷-乙酸乙酯1:1)(所得物:M-AcOH-H20,372.2297。C23H3204需要 M,372.2301;发现:M -AcOH -HCOH,360.2295.C22H320,需要 M 360.2301);vmax-(薄膜)/cm-' 3435 (OH)、1728 (Ck-0, 醋酸酯)、1668 (C=O, 酮)、1246 (C-0, 醋酸盐) 和 1026 (C-0-C);&,0.62 (3 H, S, 13-H3C), 1.14 (3 H, d, J 6, 20-H3C), 1.99 (3 H, S, 醋酸纤维), 2.04 (3 H, s, 醋酸纤维), 2.43 (1 H, dd, J4a,38.7, Jgem 16.8, 4-Ha), 2.69 (1 H, dd, J4b.3 5.6, J,,, 16.8, 4-Hb), 3.59 (I H, d, Jgem13.0, 19-Ha), 3.83 (1 H, d, Jgem13.0, 19-Hb), 4.83 (lH,m,20-H), 5.05(1 H,m,3-H)和5.14(1H,dd,J6,,,5.1, J6.7b 9.2, 6-H);6、12.1(C-18)、19.1 7 (C-21)、20.9 (C-ll)、21.1 (醋酸纤维)、21.4 (醋酸纤维)、24.1 (C-l5)、24.7 (C-16)、25.5 (C-1 TI)、25.8 (C-27)、32.7 (C-8)、38.4 (C-12)、39.1 (C-7)、41.6 (C-13)、45.0 (C-4) 50.4 (C-9)、54.3 (C-14)、54.9 (C-17)、56.4 (C-lo)、62.5 (C-19)、69.8 (C-3)、72.5 (C-20)、95.6 (C-6)、170.1 (醋酸纤维)、170.4 (醋酸纤维) 和 21 1.O (C-5);m/z (EI) 372 (m' -AcOH -HZO, 8.6%)、360 (m -AcOH -HCOH, 25)、342 (9,161 (21)、126 (26)、125 (29)、109 (40) 和 43 (100)。致谢 我们感谢布宜诺斯艾利斯大学和CONICET(阿根廷)对这项工作的财政支持。A. A. G. 感谢 CONICET 的奖学金。参考文献 1 S. R. Ramadas 和 J. Radhakrishnan, J. Sci. Ind. Rex, 1972,31,14.5.2 例如见:A. D. Cross, F. A. Kincl and A. Bowers, USP 3 1.50 140/1964 (Chem. Abstr., 1964,61, 16131f)。3 H. Suginome 和 T. Kondoh, J. Chem. Soc., Perkin Trans.I, 1992, 31 19 及其引用的参考文献。4 H. 0.豪斯曼,安格。Chem., Int. Ed. Engl., 1971,10,4.50.5 S. N. Ananchenko 和 I. V. Torgov,Tetrahedron Lett.,1963 年,1553 年。6 W. N. Speckamp 和 H. Kesselaar,Tetrahedron Lett.,1974,3405。7 T. L. Jacobs 和 R. B. Brownfield, J. Am. Chem. SOC.,1960, 82, 4033.8 A. L. Brachet-Cota 和 G. Burton, Z. Naturforsch., Teil.B, 1988,43, 491.9 Y. Fujimoto 和 T. Tatsuno,Tetrahedron Lett.,1976 年,3325 页。10 瓦Hartwig, Tetrahedron, 1983, 39, 2609 以及其中引用的参考文献。11 D. H. R. Barton, D. 0.Jang 和 J. Cs. Jaszberenyi, J. Org. Chem., 1993,58,6338.12 D.H.R.Barton、W.B.Motherwell和A.Stange,《综合》,1981年,第743页。13 P. de Armas, J. J. Concepcion, C. G. Francisco, R. Hernandez, J. A. Salazar, and E. Suarez, J. Chem. SOC.,Perkin Trans.我,1989年,第405页。14 H. Suginome 和 S. Yamada,J. Org. Chem.,1984,49,3753。15 C.A.G.Haasnoot,F.A.A.M.de Leeuw和C.Altona,四面体,1980,36,2783。论文 4/0767 1K 收稿日期:1994 年 12 月 16 日收稿日期:1995 年 1 月 9 日录用

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号