首页> 外文期刊>Advanced Sustainable Systems >Low‐Cost, Scalable, and Reusable Photothermal Layers for Highly Efficient Solar Steam Generation and Versatile Energy Conversion
【24h】

Low‐Cost, Scalable, and Reusable Photothermal Layers for Highly Efficient Solar Steam Generation and Versatile Energy Conversion

机译:低成本、可扩展和可重复使用的光热层,用于高效太阳能蒸汽产生和多功能能量转换

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Abstract Solar steam generation (SSG) based on the photothermal effect has been considered to be a promising avenue for freshwater production. However, the fabrication of highly‐efficient photothermal layers, at large‐scale and low‐cost is still a challenge, hindering practical applications. Herein, it is demonstrated that carbonized towel‐gourd sponges (CTGS) are excellent photothermal materials. And a capillarity‐driven interfacial self‐coating method is developed to prepare the super‐hydrophilic CTGS/paper photothermal layer. The SSG device based on the CTGS/paper exhibits a high evaporation rate of 1.53 kg m −2 h −1 with an efficiency of 95.9 under 1 sun irradiation. The high evaporation rate only slightly reduces when confronting the diverse and complex practical SSG conditions, such as seawater and waste water. Moreover, CTGS/paper has the advantages of simple preparation, recyclablability, low‐cost (≈4 $ per m 2 ), high‐efficiency, flexibility, and scalability, which are the important prerequisites for promoting SSG techniques for industrialization and practical applications. In addition, the versatile energy conversion ability of the CTGS/paper is also demonstrated. Assisted by the photothermal effect of CTGS/paper, solar energy is converted to mechanical energy and electricity.
机译:摘要 基于光热效应的太阳能蒸汽发电(SSG)被认为是一种很有前途的淡水生产途径。然而,大规模、低成本地制备高效光热层仍然是一个挑战,阻碍了实际应用。本文证明了碳化毛巾葫芦海绵(CTGS)是优良的光热材料。并建立了一种毛细管驱动的界面自涂覆方法,制备了超亲水性CTGS/纸光热层。基于CTGS/paper的SSG装置在1次太阳照射下表现出1.53 kg m −2 h −1的高蒸发速率和95.9%的效率。当面对海水和废水等多样化和复杂的实际SSG条件时,高蒸发率仅略有降低。此外,CTGS/paper还具有制备简单、可回收利用、成本低(≈4 $/m 2)、高效、灵活、可扩展等优点,是推动SSG技术产业化和实际应用的重要前提。此外,还展示了CTGS/纸张的多功能能量转换能力。在CTGS/纸张的光热效应的辅助下,太阳能转化为机械能和电能。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号