...
首页> 外文期刊>Journal of medical engineering & technology >New synthetic mitral valve model for human prolapsed mitral valve reconstructive surgery for training
【24h】

New synthetic mitral valve model for human prolapsed mitral valve reconstructive surgery for training

机译:New synthetic mitral valve model for human prolapsed mitral valve reconstructive surgery for training

获取原文
获取原文并翻译 | 示例
           

摘要

The training process of young surgeons is highly desirable in order for them to gain an understanding of the quality of care and patient safety required during cardiac surgeries, however, it may take a few years of practice in order for them to properly develop these skills. Artificial life-like platforms and models are extremely recommended for teaching hands-on and real-world practice in both junior and even experienced medical professionals and surgeons. Suitable and accessible training tools are of significant importance for simulating a particular surgery in order to provide practice opportunities for a specific surgical procedure. In this study, we focussed on the simulation of the human mitral valve prolapse reconstructive surgery. An innovative, artificial, biomimetic model was designed and fabricated made of Cryogel biomaterial developed in our lab that is suitable for the precise practice on the mitral valve prolapse model. The proposed model is mainly made up of polyvinyl alcohol (PVA) cryogel, which is designed to resemble the geometric and mechanical properties of a diseased (prolapse) mitral valve. We simulated the constructive prolapsed mitral valve surgery entirely on a synthetic platform. The platform was made available to four certified cardiac surgeon and there were unanimously very positive with no considerable differences in the procedural assessments between them. The proposed model has a similar appearance and texture to that of a diseased mitral valve and holds consistent mechanical properties to those of the real tissue. The offered technology may be used for other cardio-thoracic reconstructive surgeries with high precision and consistency.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号