首页> 外文期刊>Energy & environment >Computational Galerkin Finite Element Method for Thermal Hydrogen Energy Utilization of First Grade Viscoelastic Hybrid Nanofluid Flowing Inside PTSC in Solar Powered Ship Applications
【24h】

Computational Galerkin Finite Element Method for Thermal Hydrogen Energy Utilization of First Grade Viscoelastic Hybrid Nanofluid Flowing Inside PTSC in Solar Powered Ship Applications

机译:太阳能船舶PTSC内流动的一级粘弹性杂化纳米流体热氢能利用的计算Galerkin有限元方法

获取原文
获取原文并翻译 | 示例
       

摘要

Parabolic trough solar collectors (PTSCs) are commonly used in solar thermal implementations to achieve high-temperatures. The current investigation looks at entropy formation and the effect of nano solid particles on a parabolic trough surface collector (PTSC) mounted aboard a solar-powered ship (SPS). The non-Newtonian first grade viscoelastic type, as well as a porous medium and Darcy-Forchheimer effects, were utilised in the current study. The flowing of PTSC was created by a non-linear stretching sheet, and the changing thermal conductivity, heat source, and viscous dissipation effects were used to calculate the heat flux in the thermal boundary layer. To convert partial differential equations (PDEs) into solvable ordinary differential equations (ODEs) with boundary-constraints, a similarity transformation strategy was used. The boundary-constraints and PDEs have been reduced to a set of non-linear ODEs (ordinary differential equations). To reach the approximated solution of ODEs, the Galerkin finite element method (G-FEM) is used. As working fluids, copper-sodium alginate (Cu-SA) and molybdenum disulfide-copper/sodium alginate (MoS_(2)-Cu/SA) hybrid nanofluids were used. According to the findings, the permeability factor diminished the Nusselt number whilst boosting the skin friction factor. Furthermore, overall entropy variance throughout the domain was increased for flow speeds using the Reynolds number, and viscosity changes were tracked using the Brinkman number. When compared to MoS_(2)-Cu/SA, using Cu-SA nanofluid boosted thermal efficiency by 1.3–18.8%.
机译:槽式太阳能集热器(PTSC)通常用于太阳能热实现中,以实现高温。目前的研究着眼于熵的形成和纳米固体颗粒对安装在太阳能船舶(SPS)上的抛物线槽表面收集器(PTSC)的影响。本研究使用了非牛顿一级粘弹性类型,以及多孔介质和达西-福希海默效应。PTSC的流动由非线性拉伸片产生,利用热导率、热源和粘性耗散效应的变化来计算热边界层中的热通量。为了将偏微分方程(PDE)转换为具有边界约束的可解常微分方程(ODE),采用了相似性变换策略。边界约束和偏微分方程已简化为一组非线性常微分方程(常微分方程)。为了得到常微分方程的近似解,使用了伽辽金有限元法(G-FEM)。采用铜-海藻酸钠(Cu-SA)和二硫化钼-铜/海藻酸钠(MoS_(2)-Cu/SA)杂化纳米流体作为工作流体。根据研究结果,渗透因子降低了Nusselt数,同时提高了皮肤摩擦因子。此外,使用雷诺数增加了整个域的总体熵方差,并使用 Brinkman 数跟踪粘度变化。与MoS_(2)-Cu/SA相比,使用Cu-SA纳米流体的热效率提高了1.3-18.8%。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号