...
首页> 外文期刊>Journal of Geophysical Research, D. Atmospheres: JGR >Scaling of Dust Flux With Friction Velocity: Time Resolution Effects
【24h】

Scaling of Dust Flux With Friction Velocity: Time Resolution Effects

机译:Scaling of Dust Flux With Friction Velocity: Time Resolution Effects

获取原文
获取原文并翻译 | 示例
           

摘要

The intermittency of aeolian soil erosion has motivated studies to extend to small time resolution (less than 15-30 min) the scaling property of erosion fluxes with the friction velocity u~*. However, common methods used to estimate u~* such as the law of the wall or the eddy covariance are only valid for stationary conditions, that is, long periods of 15-30 min. Unlike these methods, the wavelet transform method is applicable for nonstationary conditions. Here, this method is used to investigate the scaling property of the dust flux Fwd with u~* at 1-min and 10-s resolutions, during erosion events. At 15-min resolution, u~* and Fwd estimated from the wavelet transform are identical to those obtained by eddy covariance. At smaller resolution, u* and F_(wd) exhibit strong fluctuations around their 15-min trend, reflecting the nonstationarity of the flow and the intermittency of dust emission, respectively. While the 15-min resolution Fwd appears as correlated with u~* as with the mean wind speed U, with decreasing resolution, Fwd becomes less correlated with u~* but still significantly correlated with U. Our results suggest that u~* is a suitable scaling parameter of Fwd over usual 15-to 30-min periods with the advantage of being height independent compared to U. However, at small time resolution, U becomes more relevant to scale Fwd, the surface friction velocity becoming hardly accessible due to the absence of a constant momentum flux layer. Our study demonstrates the suitability of the wavelet transform to estimate dust fluxes at small time resolution or during nonstationary events.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号