...
首页> 外文期刊>BioEssays: news and reviews in molecular, cellular and developmental biology >Degradation of mRNA in bacteria: emergence of ubiquitous features.
【24h】

Degradation of mRNA in bacteria: emergence of ubiquitous features.

机译:Degradation of mRNA in bacteria: emergence of ubiquitous features.

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The amount of a messenger RNA available for protein synthesis depends on the efficiency of its transcription and stability. The mechanisms of degradation that determine the stability of mRNAs in bacteria have been investigated extensively during the last decade and have begun to be better understood. Several endo- and exoribonucleases involved in the mRNA metabolism have been characterized as well as structural features of mRNA which account for its stability have been determined. The most important recent developments have been the discovery that the degradosome-a multiprotein complex containing an endoribonuclease (RNase E), an exoribonuclease (polynucleotide phosphorylase), and a DEAD box helicase (RhlB)-has a central role in mRNA degradation and that oligo(A) tails synthesized by poly(A) polymerase facilitate the degradation of mRNAs and RNA fragments. Moreover, the phosphorylation status and the base pairing of 5' extremities, together with 3' secondary structures of transcriptional terminators, contribute to the stability of primary transcripts. Degradation of mRNAs can follow several independent pathways. Interestingly, poly(A) tails and multienzyme complexes also control the stability and the degradation of eukaryotic mRNAs. These discoveries have led to the development of refined models of mRNA degradation. Copyright 2000 John Wiley & Sons, Inc.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号