首页> 外文期刊>The Journal of Chemical Physics >Enhanced sampling using replica exchange with nonequilibrium switches: A case study on simple models
【24h】

Enhanced sampling using replica exchange with nonequilibrium switches: A case study on simple models

机译:Enhanced sampling using replica exchange with nonequilibrium switches: A case study on simple models

获取原文
获取原文并翻译 | 示例
           

摘要

Configurational sampling is central to characterize the equilibrium properties of complex molecular systems, but it remains a significant computational challenge. The conventional molecular dynamics (MD) simulations of limited duration often result in inadequate sampling and thus inaccurate equilibrium estimates. Replica exchange with nonequilibrium switches (RENS) is a collective variable-free computational technique to achieve extensive sampling from a sequence of equilibrium and nonequilibrium MD simulations without modifying the underlying potential energy surface of the system. Unlike the conventional replica exchange molecular dynamics (REMD) simulation, which demands a significant number of replicas for better accuracy, RENS employs nonequilibrium heating (forward) and cooling (reverse) work simulations prior to configurational swaps to improve the acceptance probability for replica exchange by using only a few replicas. Here, we have implemented the RENS algorithm on four model systems and examined its performance against the conventional MD and REMD simulations. The desired equilibrium distributions were generated by RENS for all the model systems, whereas REMD and MD simulations could not do so due to inadequate sampling on the same timescales. The calculated work distributions from RENS obeyed the expected nonequilibrium fluctuation theorem. The results indicate that the switching time of the nonequilibrium simulations can be systematically altered to optimize the acceptance probability and the reduced work of switching. The modular implementation of RENS algorithm not only enables us to readily extend it to multiple replicas but also paves the way for extension to larger molecular systems in the future.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号