首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >New syntheses of arylphosphinic acids from the reaction of ethyl diethoxymethylphosphinate with aryl bromides and phenols
【24h】

New syntheses of arylphosphinic acids from the reaction of ethyl diethoxymethylphosphinate with aryl bromides and phenols

机译:二乙氧基甲基膦酸乙酯与芳基溴和酚反应合成芳基膦酸的新方法

获取原文
获取外文期刊封面目录资料

摘要

J. CHEM. SOC. PERKIN TRANS. 1 1995 New syntheses of arylphosphinic acids from the reaction of ethyl diethoxymethylphosphinate with aryl bromides and phenols Stuart N. L. Bennett and Roger G. Hall*.? Central Research Laboratories, Ciba Geigy PLC, Hulley Road, MacclesJield, Cheshire SKlO 2NX, UK The chemistry of the hypophosphorous acid synthon, ethyl diethoxymethylphosphinate 1 has been further developed to afford efficient new routes to arylphosphinic acids 6and 2-hydroxyphenylphosphinicacids 10. In one approach, a palladium(0) catalysed P-H insertion has been used; the second approach utilises a lithium-based ortho rearrangement of aryl phosphonates, readily prepared from the Atherton-Todd reaction of 1with phenols. In both cases, the phosphinic acids were obtained in a final step by acid deprotection.Our interest in the synthesis of functional phosphinic acids RP(O)(OH)H has been established for several reasons. These compounds have demonstrated interesting biological activity as close analogues of biologically important carboxylic acids, e.g. a-and y-amino acids. 1,2 In addition, such functional phosphinic acids are readily transformed, via oxidation to the correspond- ing phosphonic acids 'or through Arbuzov or Michael addition chemistry, into unsymmetrical phosphinic acids 3,4 underlining their utility as important synthetic intermediates. Synthons of hypophosphorous acid,5*6 such as ethyl diethoxymethyl- phosphinate 1 have previously been shown to be valuable building blocks for the synthesis of functional aliphatic phos- phinic acids.The phosphinate 1undergoes reactions typical of P-H species-protection of the P-H function as the diethoxy- methyl group allows functional group transformations to be performed on the intermediates 2, and a final deprotection step then regenerates the phosphinic acid functionality, leading to products 3 (Scheme 1). protectionH-P--H * (EtOkCH-P-HI (EtO)$H, TFA I OH OEt 1 chemistryI deprotection H-P-R (EtOhCH-P-RI I OH OEt 3 2 Scheme 1 As a continuation of our studies into the utility of such reagents, we now report the use of 1 in the synthesis of functional arylphosphinic acids. Two methods are described; a palladium(0)-catalysed coupling with aryl bromides and base- induced rearrangement of phenolic phosphonates.Existing routes to arylphosphinic acids generally involve the synthesis of the corresponding dichlorophosphine and subse- quent aqueous hydrolysis (Scheme 2). The reaction conditions employed together with the difficulty in handling of the inter- mediates, makes an alternative approach attractive. (I) PdO-catalysed P-H insertion We have found that a tetrakis(tripheny1phosphine)palladium 7 Present address: Ciba Crop Protection, CH 4002 Basel, Switzerland. P02H2 y2 I PC13 Q -QAlC13 or FeC13 a H20 R R R Scheme 2 (0)-catalysed reaction of aryl bromides 4a-g with ethyl diethoxymethylphosphinate 1 affords arylphosphinate esters 5a-g in good to excellent yield (Scheme 3). Hydrolysis of the esters with 4 mol dmP3 hydrochloric acid afforded the arylphosphinic acids 6a-e directly.Similar methodology had been previously employed in the synthesis of arylphosphonic esters,' disubstituted phosphinic esters ' and tertiary phosphine oxides. ' The diethoxymethyl PH protecting group is sufficiently stable to permit further elaboration of substituents on the aryl ring, prior to acid deprotection, and hence afford a wider range of substituted aryl phosphinic acids. Thus, the nitro 5a, b and cyano 5f, g substituted arylphosphinates can be easily reduced (H, over Pd/C) to yield the corresponding amino 5h, i or aminomethyl 5j, k substituted phosphinates (Scheme 4). Deprotection as described above gives the corresponding phosphinic acids 6f, g and 6h, i, respectively.Such hydrogenolysis in the presence of an unprotected PH function would be thwarted by poisoning of the metal catalyst. (2) Phosphonate-phosphinate rearrangement The base-induced rearrangement of phenolic phosphates to give 2-hydroxyphenyl phosphonates has been reported in the literature. 12-' 2-Hydroxyphenylphosphinic acids 10, are, how- ever virtually unknown in the literature. An X-ray structure of the parent compound, 2-hydroxyphenylphosphinicacid 10a was presented in poster form.17 This compound, a close analogue of salicyclic acid, was prepared '*via coupling of a Grignard reagent derived from a suitably protected 2-bromophenol with a chlorobis(dialky1amino)phosphine and subsequent hydrolysis of the aryl phosphine so formed.We found that the phenols 7a-d are readily phosphorylated by 1 under Atherton-Todd conditions, to afford aryl phosphonates 8a-d in good yield. Treatment of these phosphonates with LDA in tetrahydrofuran at -70 "C gave the rearranged products, 2-hydroxyphenylphosphinates 9a4. Hydrolysis of the phosphinates with mineral acid, as above gave the crystalline arylphosphinic acids 10a-d in high yield (Scheme 5). The yield obtained for the parent rearranged phosphinate 9a was disappointing. Attempts to improve this by varying reaction conditions such as choice of base, temperature, 1146 J. CHEM. SOC. PERKIN TRANS. 1 1995 4 5 6 R' R2 Yield () Yield () a NO, H 5a 89 6a 88 b H NO2 5b 67 6b 83 c NMe, H 5c 65 6c 74 d Me H !I72 6d 53 e Ac H 5e 89 6e 65 f CN H 5f 73 gH CN 5g 75 Scheme 3 Reagents and conditions: i, (EtO),CHP(O)OEtH 1, Pd(PPh,), 1-10 h, 90-100 "C; ii, 4 mol dm-, HCl sequence of addition did not improve the process.The corresponding phosphate-phosphonate rearrangement pro-ceeds in much higher yield." One reason for the low yield obtained for 9a could be competing deprotonation of the acetal C-H proton by the ortho lithium species, leading to decomposition products (see below). uecornpowuon* products Direct deprotonation of the acetal C-H by LDA can comfortably be ruled out, on the basis of earlier results with alkyl phosphinate~.~ To try and prove this hypothesis, a deuterium quench experiment was performed.Generation of the anion of 8a with LDA at -70 "C followed by an immediate quench with deuterioacetic acid, gave a product identical with 8a, except with a greatly reduced signal in the 'H NMR spectrum corresponding to the acetal C-H. With a second ovtho-directing group, as in 8b4, where the lithium would be expected to be more strongly coordinated, this process is suppressed in favour of the rearrangement, resulting in higher yields for phosphinates 9b-d. The regiochemistry shown for the rearranged products 9b-d was established by NMR experiments on the corresponding acids (see Tables 1 and 2). With the P-H functionality protected as the di- ethoxymethyl group, it was possible to reduce the chloro n1 II,CH(OEt)2OH I ?-pNOEt 7 10 9 7 R Yield ()8 Yield () 9 Yield () 10 a H 90 15 90 b c Fc1 74 77 78 63 90 50 d Br 78 52 77 Scheme 5 Reagents and conditions: i, compound 1 Et,N, CCl,; ii, LDA, THF, -70 "C; iii, 4 mol dm-3 HCl, 90-100 "C substituent in phosphinate 9c (HJPd-C) to give 9a in high yield, thus circumventing the poor yield previously obtained.(3) 2-Naphthol derivatives We were interested to study the regioselectivity of the re-arrangement of 2-naphthol-derived phosphonates which, at the time of this work, was unknown in the literature. Phos- phorylation of 2-naphthol with 1 gave the phosphonate 11 which, on treatment with LDA, gave a 2:l mixture of phosphinates 12 and 13, again in a rather poor yield of 27 (Scheme 6).Subsequently, a similar study has been published, reporting the analogous phosphate-phosphonate rearrange-ment." The authors obtained a similar 2: 1 ratio of isomers, although only the major isomer was characterised. Conclusions We have demonstrated that ethyl diethoxymethylphosphinate 1 may be successfully employed to prepare substituted arylphospinic acids. This broadening of the utility of such hypophosphorous acid synthons, which are stable and easily prepared, underlines their key role in synthetic organophos- phorus chemistry. 5 h-k 6 R' R2 R' R2 Yield () R' RZ Yield () a NO, H h NH, H 70 f NH, H 75 b f g H CN H NO2 H CN i jk H CH,NH, H NH, H CH,NH, 92 75 90 g h i H CH,NH, H NH, H CH,NH, 76 90 79 Scheme 4 Reagents and conditions: i, Pd-C, H, EtOH; ii, 4 mol dm-j HCI, 9S100 "C J.CHEM. SOC. PERKIN TRANS. 1 1995 11li omo P -CH(OEt)2 'OEt 12 13 Scheme 6 Reugenrs and conditions: i, LDA, THF, -70 "C Experimental All compounds for which analytical and spectroscopic data are quoted were homogeneous by TLC and 31PNMR. TLC was carried out on Merck high performance silica gel 6OF,,, pre-coated glass plates (10 x 5 cm). Products were visualised by UV light or by spraying with aqueous alkaline potassium permanganate. Preparative chromatography was performed on silica gel 60 (70-230 mesh ASTM) (Merck). Solvents were routinely dried before use using procedures described in The Purification of Laboratory Chemicals, D.D. Perrin and W. L. F. Armarego, Pergamon Press. Melting points were carried out on a Biichi type S apparatus and are uncorrected. 'H NMR spectra were recorded on a Bruker AC400 spectrometer operating at 400.13 MHz or a JEOL FX-90Q spectrometer operating at 89.55 MHz. Referenced internally to Me, (for CDC1, solutions) and externally to sodium (trimethylsily1)propionate (for D,O solutions). I3C NMR spectra were recorded on the above instruments operating at 100.614 and 22.49 MHz, respectively (and referenced internally to I3CDCl3) as were 31P NMR spectra operating at 161.91 and 36.21 MHz, respectively (and Table 1 400 MHz spectroscopic data (6,) for phosphinic acids 10 a-d GH(ZH,-DMSO) Compound 3-H 4-H 5-H 6-H P-H Table 2 100 MHz spectroscopic data (S,)for phosphinic acids 1Oa-d Chemical shift Gc(ZH,-DMSO) Compound C-1 c-2 c-3 c-4 c-5 C-6 1Oa 118.32 159.92 116.02 134.07 119.03 131.59 (4 (4 (s) (s) (4 (410b 104.83 162.21 112.92 135.54 105.81 163.54 (W (dd) (dd) (4 (W (d) 1OC 113.27 163.30 116.34 135.21 120.57 135.68 (4 (d) (4 (4 (4 (41Od 114.67 163.53 116.93 135.44 124.01 124.52 (4 (s) (4 (s) (4 (4 1147 referenced externally to H,PO, for both CDCl, and D,O solutions).19FNMR spectra were obtained on the JEOL FX- 90Q instrument operating at 84.25 MHz (and referenced externally to CFC1,). JValues are given in Hz. TR spectra were measured on a Perkin-Elmer 88 1 grating spectrophotometer as thin films or Nujol mulls. Only significant absorptions are quoted. Microanalyses were obtained by Instrumentation, Research and Consultancy Services, University of Manchester.Physical analytical data for the arylphosphinic acids 6 and 10 are summarised in Table 3. Ethyldiethoxymethyl(4nitrophenyl)phosphinate5a A mixture of ethyl diethoxymethylphosphinate 1 (3.9 g, 20 mmol), 4-bromonitrobenzene 4a (4.0 g, 20 mmol), dry triethylamine (4.0 g, 40 mmol), toluene (15 cm3) and tetrakis(triphenylphosphine)palladium(o) (2.3 g, 2 mmol) was sealed in a thick-walled tube under argon. The mixture was heated at 90 "C for 1 h during which time the reaction mixture became clear and then deposited a precipitate (of triethylamine hydrobromide). The reaction mixture was poured onto ethyl acetate (50 cm3), filtered, and evaporated to afford an oil.Purification by column chromatography over silica gel with diethyl ether as eluent afforded compound 5a (5.7 g, 89) as an oil; v,,,(thin film)/cm-' 1600 (Ar), 1520, 1350 (NO,), 1440 (ArP), 1240 (PO) and 1060 (POAlk); G,(CDCl,, 90 MHz), 8.4-7.95 (4 H, m, ArH), 4.85 (1 H, d, J 7.2, PCH), 4.4-4.0 (2 H, m, POCH,), 4.0-3.5 (4 H, m, CH, x 2) and 1.3 (9 H, m, CH3 x 3); Sp(CDCI3, 36 MHz) 28.8. Ethyl diethoxymethyl(3-nitropheny1)phosphinate 5b This compound was similarly prepared from 1 (2.0 g, 10 mmol) and 3-nitrobromobenzene 4b (2.0 g, 10 mmol) with heating at 90deg;C for 6 h. Purification by column chromatography over silica gel eluting with diethyl ether afforded compound 5b (2.1 g, 67) as an oil; vmax(thin film)/cm-' 1600 (Ar), 1530, 1350 (NO,), 1230 (PO) and 1060 (POAlk); GH(CDCIj,90 MHz) 8.8- 8.25 (3 H, m, ArH), 7.95-7.6 (1 H, m, ArH), 4.9 (1 H, d, J 7.2, PCH), 4.5-3.5 (6 H, m, CH, x 3) and 1.3 (9 H, m, CH, x 3); G,(CDCl,, 36 MHz) 28.3.Ethyl diethoxymethyl(4-N-Ndimethylaminophenyl) phosphinate5c This compound was similarly prepared from 1(3.9 g, 20 mmol) and 4-bromo-N,N-dimethylaniline 4c (4.1 g, 20 mmol) with heating at 100 "C for 10 h. Purification by column chromato- graphy over silica gel eluting with ethyl acetate-diethyl ether (1 :1) afforded compound 5c (4.1 g, 65) as an oil; v,,,(thin film)/cm-' 1600 (Ar), 1440,1230 and 1040; GH(CDCl,, 90 MHz), 7.7(2H,m,ArH),6.7(2H,dd,ArH),4.75(1H,d, J7.2,PCH), 4.4-3.4(6H,m,CH2 x 3),3.0(6H,s,NCH3 x 2)and1.3(9H, m, CH, x 3); Gp(CDCl,, 36 MHz) 32.8.Carbon-phosphorus coupling constant (J/Hz) Carbon-fluorine (J/Hz) C-1P C-2P C-3P C-4P C-5P C-6P 128.8 4.82 7.75 -12.98 7.85 _-121.24 7.74 6.94 -5.23 C21.33) C1.611 C3.121 C11.261 C22.031 C246.801 125.9 3.01 7.44 -6.13 3.32 127.2 -7.34 -7.24 4.95 1148 J. CHEM. SOC. PERKIN TRANS. 1 1995 Table 3 Physical analytical data for aryl phosphinic acids 6a-i, 1Oa-d Found () (Required) MP ( T/OC) 31PNMR Compd. (Lit.) C H N P G(so1vent) JPHIHZ 6a 175-177 38.55 3.40 7.30 16.40 13.7 562.0 6b (134)21 163-168 (38.50) 38.45 3.25 3.00 7.50 7.30 (16.55) 16.20 13.0 ('H,-DMSO) 572.5 6c 152-154 (38.50) 51.40 3.25 6.35 7.50 7.45 (16.55) 17.0 16.1 (*H,-DMSO) 563.0 6d (162)22 102-103 (51.90) 53.70 6.55 5.60 7.55 (16.75) 19.8 18.5(D2O) 523.9 6e (1 04)2 115-118 (53.85) 52.00 5.8 1 4.80 (19.85) 16.55 (D20-NaOD) 20.3 570.0 6f 171-174 (52.2) 45.70 4.95 5.10 8.80 (16.80) 19.50 17.4(D2O) 540.0 6g 6h (169)24 240-244 250 (45.85) 45.65 (45.85) 48.90 5.15 5.0 5.15 5.80 8.90 8.80 8.90 (19.70) 19.70 (19.70) 18.1 19.9 17.8 (D2O) (D2O-DCl) 577.0 529.2 6i 250 (49.15) 48.90 5.90 5.70 8.20 8.00 (18.1) 18.3 17.7 P2O) 530.0 (49.15) 5.90 8.20 (18.1) (D@) 1Oa 128-1 32 45.5 4.3 (45.6) 4.45 10b 105 41.15 3.3 (40.49) 3.45 1oc 112 37.05 2.9 (37.4) 3.15 1Od 122- 125 30.25 2.6 (30.4) 2.55 Ethyl diethoxymethyl(4-methylpheny1)phosphinate 5d This compound was similarly prepared from 1 (3.9 g, 20 mmol) and 4-bromotoluene 4d (3.4 g, 20 mmol), with heating at 100 "C for 1 h.Purification by column chromatography over silica gel eluting with diethyl ether afforded compound 5d (4.1 g, 72) as an oil; v,,,(thin film)/cm-' 1605 (Ar), 1405, 1240 (PO), and 1060 (POAlk); G,(CDCl,, 90 MHz), 7.8 (2 H, m, ArH), 7.4 (2 H, m, ArH), 4.8 (1 H, d, J7.2, PCH), 4.5-3.5 (6 H, m, CH, x 3), 2.45 (3 H, s, ArCH,) and 1.3 (9 H, m, CH, x 3); G,(CDCl,, 36 MHz) 31.6. Ethyl 4-acetylphenyl(diethoxymethyl)phosphinate 5e This compound was similarly prepared from 1 (3.9 g, 20 mmol) and 4-bromoacetophenone 4e (4.0 g, 20 mmol), with heating at 100deg;C for 1 h. Purification by column chromatography over silica gel eluting with ethyl acetate-diethyl ether (1 : 1) afforded compound 5e (5.6 g, 89) as an oil; v,,,(thin film)/cm-' 1700 (CO), 1440 (ArP), 1260, (PO) and 1060 (POAlk); G,(CDCl,, 90 MHz), 8.2-7.8 (4H, m, ArH), 4.8 (1 H, d, J7.2, PCH), 4.45-3.75 (6 H, m, CH, x 3), 2.6 (3 H, s, COCH,) and 1.5-1.1 (9 H, m, CH, x 3); Gp(CDC1,, 36 MHz) 30.3.Ethyl 4-~yanophenyl(diethoxymethyl)phosphinate5f This compound was similarly prepared from 1 (3.9 g, 20 mmol) and 4-bromobenzonitrile 4f (3.7 g, 20 mmol) with heating at 90deg;C for 1 h. Purification by column chromatography over silica gel eluting with diethyl ether afforded compound 5f(4.4 g, 75) as an oil; v,,,(thin film)/cm-' 2240, (CN), 1400, 1230, (PO) and 1060 (POAlk); G,(CDCI,, 90 MHz) 8.2-7.7 (4 H, m, ArH), 4.9 (1 H, d, J7.2, PCH), 4.5-3.5 (6 H, m, CH, x 3) and 1.35 (9 H, m, CH, x 3); G,(CDCl,, 36 MHz) 26.3.Ethyl 3-~yanophenyl(diethoxymethyl)phosphinate 5g This compound was similarly prepared from 1 (3.9 g, 20 mmol) and 3-bromobenzonitrile 4f (3.7 g, 20 mmol) with heating at 100 "C for 1 h. Purification by column chromatography over 19.6 22.3 590.0 (1 9.6) 17.6 14.5-14.4(D2O) 591.0 (17.6) 16.2 18.5(J-320) 591.0 (16.1) 13.15 13.4(D2O) 556.5 (13.1) (D20-NaOD) silica gel eluting with diethyl ether afforded compound 5g (4.3 g, 73) as an oil; v,,,(thin film)/cm-l 2240, (CN), 1240, (PO) and 1060 (POAlk); G,(CDCl,, 90 MHz), 8.0-7.6 (4 H, m, ArH), 4.9 (1 H, d, J 7.2, PCH), 4.5-3.6 (6 H, m, CH, x 3) and 1.3 (9 H, m, CH, x 3); G,(CDCl,, 36 MHz) 28.5.Ethyl 4-aminomethylphenyl(diethoxymethyl)phosphinate 5j A solution of the nitrile 5f(0.6 g, 2 mmol) in ethanol (25 cm3) and chloroform (1 cm3) was reduced over 5 Pd/C (0.2 g) with hydrogen at 40 psi at 45 "C. After 24 h, filtration and evaporation of the solvents afforded the crude product as the hydrochloride. The salt was dissolved in THF, treated with triethylamine, filtered and evaporated to an oil. Purification by column chromatography over silica gel eluting with 5 methanol in chloroform afforded compound 5j (450 mg, 75) as a colourless oil; v,,,(thin film)/cm-' 3400br (NH,), 1600, 1220 and 1060 (POAlk); S,(CDCI,, 90 MHz) 7.9-7.6 (4 H, m, ArH), 6.7 (2 H, br s, NH,), 4.75 (1 H, d, J 7.6, PCH), 4.2 (2 H, s, ArCH,), 4.34.0 (2 H, m, CH,OP), 4.0-3.5 (4 H, m, CH, x 2) and 1.2 (9 H, m, CH, x 3); G,(CDCI,, 36 MHz) 30.9.Ethyl 3-aminomethylphenyl(diethoxymethyl)phosphinate 5k This compound was similarly prepared as described above, with reduction of the nitrile 5g for 30 h. The crude product was purified by column chromatography eluting with 5 methanol in chloroform to yield recovered starting material 5g (2.8 g, 68) and then the desired compound 5k (1.2 g, 29) as a colourless oil; v,,,(thin film)/cm-' 3350br (NH,), 1230 and 1060 (POAIB); G,(CDCl,, 90 MHz), 8.0-7.3 (4 H, m, ArH), 5.25 (2 H, br s, NH,), 4.8 (1 H, d, J7.5, PCH), 3.95 (2 H, s ArCH,), 4.4-3.5 (6 H, m, CH, x 3) and 1.2 (9 H, m, CH, x 3); G,(CDCl,, 36 MHz) 31 -2.Ethyl 4-aminophenyl(diethoxymethyl)phosphinate 5h A solution of compound 5a (1.6 g, 5 mmol) in absolute ethanol (25 cm3) was reduced over 5 Pd-C (0.2 g) with hydrogen at 40 psi. After 24 h, the reaction mixture was filtered and con- J. CHEM. SOC. PERKIN TRANS. 1 1995 centrated. Purification by column chromatography over silica gel eluting with 10 methanol in ethyl acetate afforded compound 5h as a viscous oil (1 .O g, 70); v,,,(thin film)/cm-' 3350br (NH,), 1640, 1600, 1440, 1220 and 1060 (POAlk); G,(CDCl,, 90 MHz), 7.7-7.2 (2 H, m, ArH), 6.6 (2 H, dd, ArH), 4.7 (1 H, d, J 7.6, (PCH), 4.2-3.5 (8 H, m, CH, x 3 and NH,) and 1.2 (9 H, m, CH, x 3); G,(CDCl,, 36 MHz) 32.4. Ethyl 3-aminophenyl(diethoxymethyl)phosphinate 5i This compound was similarly prepared as described above, compound 5b (1.5 g, 4.7 mmol) being reduced to a colourless solid (1.2 g, 92), mp 82 "C; v,,,(thin film)/cm-' 3370br (NH,), 1635,1600,1440,1230 and 1060 (POAlk); d,(CDCl,, 90 MHz), 7.3-7.0(3H,m,ArH),6.9-6.7(1H,m,ArH),4.75(1H,d,J7.2, PCH), 4.4-3.5 (8 H, m, CH, x 3 and NH,) and 1.25 (9 H, m, CH, x 3); G,(CDCl,, 36 MHz) 31.6.4Nitrophenylphosphinic acid 6a A solution of 5a (0.3 g, 0.95 mmol) in 4 mol dmP3 hydrochloric acid (20 cm3) was heated at 100 "C for 4 h and then evaporated to afford an oil which upon co-evaporation with water gave a solid. Recrystallisation from ethanol yielded compound 6a (0.15 g, 88) as yellow crystals; v,,,(Nujol)/cm-' 2420 (PH), 1540, 1350 (NO,), 1200 and 1080; GH(CD3),S0 90 MHz, 9.0 (1 H, br s, POH), 8.48.2 (2 H, m, ArH), 8.15-7.8 (2 H, m, ArH) and 7.6 (1 H, d, J 562, PH).3-Nitrophenylphosphinic acid 6b This compound was similarly prepared from 5b (1.0 g, 3.2 mmol) by treatment with 4 mol dm-, hydrochloric acid (25 cm3), to give a yellow solid (0.50 g, 83); v,,,(Nujol)/cm-' 2380 (PH), 1530 and 1350 (NO,); G,(CD,),SO, 90 MHz, 7.9 (1 H, br s, POH), 8.67.4 (4 H, m, ArH) and 7.6 (1 H, d, J 572, PH). 4N,N-Dimethylaminophenylphosphinicacid 6c A solution of 5c (3.2 g, 10.2 mmol) in 4 mol dmP3 hydrochloric acid (30 cm3) and ethanol (30 cm3) was heated for 3 h and then evaporated to yield an oil. This was partitioned between water and ether. The aqueous phase was separated, concentrated and purified by passage down an ion-exchange column (Dowex 50-W H+ form) eluting with water.Evaporation of appropriate fractions afforded compound 6c (1.4 g, 74) as a colourless solid; v,,,(Nujol)/cm-' 2380 (PH), 1600; SH(D20, 90 MHz), 8.3-7.8 (4 H, m, ArH), 7.8 (1 H, d, J563, PH) and 3.5 (6 H, s, NCH, x 2). 4Methylphenylphosphinic acid 6d A solution of 5d (3.6 g, 12.6 mmol) in 4 mol dm-, hydrochloric acid (30 cm3) and ethanol (20 cm3) was heated at reflux for 6 h. Evaporation of solvents and co-evaporation with water (4 x ) afforded a crude solid, which was recrystallised EtOAc-light petroleum (bp 60-80 "C), 1 :51 to afford compound 6d (1.O g, 53) as a colourless solid; vmax(Nujol)/cm-' 2420 (PH), 1600 and 1460; G,(D,O/NaOD, 90 MHz), 7.6-7.0 (4 H, m, ArH), 7.3 (1 H, d, J 524, PH) and 2.2 (3 H, s, CH,).4Acetylphenylphosphinic acid 6e This compound was similarly prepared from 5e (0.5 g, 1.6 mmol), 4 mol dm-3 hydrochloric acid (10 cm3) and ethanol (3 cm3). Recrystallisation (toluene) afforded compound 6e(0.2 g, 65) as white crystals; v,,,(Nujol)/cm-l 2400 (PH), 1660, 1600 and 1250; 6,(D,O, 90 MHz) 7.9-7.3 (4H, m, ArH), 7.5 (1 H, d, J 570, PH) and 2.4 (3 H, s, CH,). 4-Aminophenylphosphiic acid 6f A solution of 5h (I .8 g, 6.2 mmol) in 4 mol dmP3 hydrochloric 1149 acid (25 cm3) was heated at 100 "C for 6 h. Evaporation and co- evaporation with water (2 x ) afforded the crude product hydrochloride salt. The salt was dissolved in ethanol and propylene oxide added dropwise to the solution.The resultant precipitate was filtered off to afford the compound 6f (1.2 g, 75) as a colourless solid; v,,,(Nujol)/crr-l 3400br (NH,) and 2375 (PH); GH(D,O, 90 MHz) 8.7-7.8 (4 H, m, ArH) and 7.8 (1 H, d, J 540, PH). 3-Aminophenylphosphinic acid 6g Similarly, the phosphinate 5i (2.2 g, 7.6 mmol) afforded compound 6g (0.9 g, 76); v,,,(Nujol)/cm- '3950br (NH,) and 2375 (PH); d,(D,O-DCl, 90 MHz), 7.9-7.4 (4 H, m, Ar-H) and 7.25 (1 H, d, J 577, PH). 4Aminomethylphenylphosphinicacid 6h A solution of 5j (0.4 g, 1.3 mmol) in 4 mol dm-, hydrochloric acid (20 cm3) was heated to 100 "C for 6 h. Evaporation of the solvent and co-evaporation of the residue with water (4 x ) afforded the crude product which was purified by ion-exchange chromatography (Dowex 50-W H+ form) with water as eluent.Compound 6h was isolated as a white powder (0.2 g, 90); v,,,(Nujol)/cm-' 3440, 3400br (NH,) and 2360 (PH); d,(D,O, 90 MHz), 7.8-7.3 (4 H, m, ArH), 7.28 (1 H, d, J 592.2, PH) and 4.2 (2 H, s, CH,). 3-Aminomethylphenylphosphinic acid 6i Similarly, compound 5k (1.4 g, 4.6 mmol) afforded compound 6i (0.5 g, 79); vmax(Nujo1)/cm-' 3350, 3280br (NH,) and 2360 (PH); amp;(D,O, 90 MHz), 7.8-7.2 (4 H, m, ArH), 7.28 (1 H, d, J 530, PH) and 4.15 (2 H, s, CH,). Ethyl diethoxymethyl(pheny1)phosphonate 8a A solution of the phenol 7a (1.9 g, 20 mmol) and 1 (3.9 g, 20 mmol) in carbon tetrachloride (50 cm3) was cooled to 0deg;C under argon after which dry triethylamine (2.0 g, 20 mmol) was added dropwise to it over 10 min.After being warmed to 23 "C and stirred for 0.5 h, the mixture was filtered. The filtrate was washed with cold 1 mol dmP3 hydrochloric acid, 1 mol dm-, aqueous sodium hydroxide and brine, dried (MgSO,) and evaporated to yield the crude product as an oil. Purification by distillation on a wiped-wall distillation unit at 80 "C/O.1 mmHg afforded compound 8a (5.1 g, 90) as a clear oil; v,,,(thin film)/cm-' 1590, 1500, 1260, 1200 and 1060; G,(CDCl,, 90 MHz) 7.3 (5 H, m, ArH), 4.95 (1 H, d, J7.2, CHP), 4.5-4.2 (2 H, m, CH,), 4.0-3.8 (4 H, m, CH, x 2) and 1.3 (9 H, m, CH, x 3); G,(CDCl,, 36 MHz) 10.5. Ethyl diethoxymethyl(3-fluoropheny1)phosphate 8b This compound was similarly prepared from 3-fluorophenol7b (5.6 g, 50 mmol) and 1(9.8 g, 50 mmol).Distillation on a wiped- wall distillation unit at 90 "C/O.l mmHg gave compound 8b (1 1.4 g, 74); v,,,(thin film)/cm-' 1260, 1240, 1 100 and 1040; G,(CDCl,, 90 MHz) 7.54.8 (4 H, m, ArH), 4.95 (1 H. d, J 7.2 CHP), 4.55-4.2 (2 H, m, CH,), 4.1-3.8 (4 H, m, CH, x 2) and 1.3 (9 H, m, CH, x 3); Gc(CDC13, 22.5 MHz) 165.0 (d, JC-,,F 245.8,C-3), 154.1 (dd,Jc-l,p8.2, Jc-i,Fll.O,C-l), 132.8(d,J22.0, C-4), 110.5 (dd, Jc-2.p 4.1, JC-2.F 24.7, C-2), 101 .O (d, Jc.p 210.1, PCH), 66.5(d,JC,, 5.5,POCH,)65.7(d,Jc,, 6.9, PCHOCH,), 18.3 (d, Jc,p5.5, POCH,CH,) and 17.0 (s, CH,); G,(CDCl,, 36 MHz) 10.6; amp;(CDCl,, 84 MHz) -I1 1.2. Ethyl 3chlorophenyl(diethoxymethyl)phosphate 8c Similarly, 3-chlorophenol7c (12.8 g, 0.1 mol) and 1 (1 9.6 g, 0.1 mol) gave compound 8c (24.8 g, 77) after distillation at 100 "C/O.l mm; 1 mm; v,,,(thin film)/cm-' 1590, 1260, 1210, 1050 and 780; G,(CDCl,, 90 MHz) 7.4-7.1 (4 H, m, ArH), 1150 J.CHEM. SOC. PERKIN TRANS. I 1995 4.95(1 H,d,J7.2,PCH),4.5-4.2(2H,m,CH2),4.l-3.8(4H,m,light petroleumdiethy1 ether (2: 1) to afford compound 9d (3.8 CH, x 2) and 1.3 (9 H, m, CH, x 3); Gp(CDCl,, 36 MHz) 10.6. Ethyl 3-bromophenyl(diethoxymethyl)phosphonate8d Similarly, 3-bromophenol7d (8.6 g, 50 mmol) and 1 (9.8 g, 50 mmol) gave compound 8d (21.7 g, 78) as a clear oil after distillation at 100 "C/O. I mmHg; v,,,(thin film)/cm -l, 1250, 1210,1050 and 710;GH(CDC1,, 90 MHz) 7.6-7.2 (4 H, m, ArH), 4.95 (1 H, d, J7.2, PCH), 4.6-4.2 (2 H, m, CH,), 4.1-3.8 (4 H, m, CH, x 2) and 1.3 (9 H, m, CH, x 3); Gp(CDCl,, 36 MHz) 10.6.Ethyl diethoxymethyl(2-hydroxypheny1)phosphinate 9a A solution of lithium diisopropylamide (10 mmol) in dry tetrahydrofuran (10 cm3) was added dropwise to a solution of compound 8a (2.9 g, 10 mmol) in THF (20 cm3) at -70 "C under argon. The reaction mixture was stirred at -70 "C for 1 h and then allowed to warm to room temperature. The reaction mixture was poured into saturated aqueous ammonium chloride (50 cm3). The organic phase was washed with water, dried (MgSO,) and evaporated to afford a crude product, purification of which by column chromatography over silica gel eluting with light petroleum-diethyl ether (1 :1) afforded compound 9a (0.43 g, 15) as a colourless solid, mp 110-111 "C; v,,,(Nujol)/cm-' 3000 (OH), 1440 (ArP), 1200 (PO) and 1040 (P-OAlk); G,(CDCl,, 90 MHz) 10.41 (1 H, br s, OH), 7.6-7.2(2H,m,ArH),7.l-6.8(2H7m,ArH),4.85(1H,d,J7.5, PCH),4.44.0(2H,m,CH2),4.O-3.8(4H,m,CH,x 2)and 1.3 (9 H, m, CH, x 3); Gc(CDCl,, 22.5 MHz) 163.3 (d, Jc-2,p5.5 C-2),135.3(d, Jc-,,p2.7,C-4), 132.5(d,Jc_,,p6.9,C-6), 119.2(d, Jc-5,P 12.4, C-5), 117.8 (d, JC-3.p 8.2, C-3), 108.6 (d, Jc-1,p 119.4, C-1), 101.2 (d, Jc,p 160.6, PCH), 66.0-65.4 (dd, PCHOCH, x 2), 62.2 (d, Jc,p6.1, POCH,), 16.45 (d, Jc,p5.5, CH,) and 15.1 (s, CH,) GP(CDC1,, 36 MHz) 37.9 (Found: C, 54.55; H, 7.5; P, 10.95. C13H210,P requires C, 54.15; H, 7.35; P, 10.75).Ethyl diethoxymethyl(2-fluoro-6-hydroxyphenyl)phosphinate 9b Similarly, 8b (6.1 g, 20 mmol) gave a crude product which was purified by column chromatography eluting with light pet- roleum-diethyl ether (1 :1) to afford compound 9b (4.8 g, 78) as an oil; v,,,(Nujol)/cm-' 3 100 (OH), 1580, 1450 (ArP), 1140 (PO), 1080 and 1040; amp;(CDCl,, 90 MHz) 11.2 (1 H, S, OH), 7.6-7.2 (1 H, m, ArH), 6.8-6.4 (2 H, m, ArH), 5.0 (1 H, dd, Jc,p 7.2 JC,F 2.0, PCH), 4.4-3.7 (6 H,m, CH, x 3) and 1.3 (9 H, m, CH3 x 3); Gc(CDCl3, 22.5 MHz) 164.9 (d, Jc-6,~10.5, C-6), 163.2(d, Jc-2,,248.5,C-2), 136.1 (d,Jc-4,~ ll.O,C-4), 113.9(dd, JC-5,P 8.2, JC-5.F 2.7, C-5), 105.5 (dd, JC-3.p 6.9, Jc-3,F 23.3, C-3), 100.0(dd, Jc,p 166.1, JC,F4.1,PCH),98.0(dd7 Jc-1.p 114.0,Jc-1,F 23.3, C-1), 64.8 (dd, CH,), 62.6 (d, J8.2, CH,), 16.2 (d, J6.8, CH,) and 15.0 (d, J 8.0, CH,); G,(CDCl,, 36 MHz) 37.4 (d, JP,F 3.9); GF(CDC1,, 84 MHz) -103.7 (Found: C, 50.9; H, 6.9; P, 10.1.C,,H,,FO,P requires C, 51.0; H, 6.6; P, 10.1). Ethyl Zchloro-6-hydroxyphenyl(diethoxymethyl)phosphinate 9c Similarly, 8c (6.4 g, 20 mmol) gave a crude product which was purified by column chromatography eluting with light pet- roleum-diethyl ether (1 : 1) to afford compound 9c (4.0 g, 63) as a clear oil; v,,,(thin film)/cm-' 3000 (OH), 1580, 1440, 1200, 1060 and 780; G,(CDCl,, 90 MHz) 11.95 (1 H, s, OH), 7.6-6.7 (3 H,m,ArH),5.25(1H,d,J7.O,PCH),4.2-3.7(6H,m,CH2x 3) and 1.3 (9 H, m, CH, x 3); G,(CDCl,, 36 MHz) 39.7. Ethyl 2-bromo-6-hydroxyphenyl(diethoxymethyl)phosphinate 9d Similarly, 8d (7.3 g, 20 mmol) gave a crude product which was purified by column chromatography over silica gel eluting with g, 52) as a low-melting waxy solid; v,,,(thin film)/cm-' 3100 (OH), 1580, 1440, 1200 and 1050; GH(CDC1,, 90 MHz) 11.95 (I H, s, OH), 7.5-6.8 (3 H, m, ArH), 5.5 (1 H, d, J 10.0, PCH), 4.4- 3.5(6H,m,CH2 x 3),1.3(6H,2 x t,CH, x 2)andl.O(3H,t, J 7.0, CH,); Gp(CDCl,, 36 MHz) 40.1 (Found: C, 42.75; H, 5.4; P, 8.45.C1 ,H,,BrO,P requires C, 42.50; H, 5.50; P, 8.45). Reduction of 9c by catalytic hydrogenation A mixture of 9c (200 mg, 0.62 mmol) and 10 palladium-on- carbon (50 mg) in absolute ethanol (10 cm3) was hydrogenated at 40 "C for 24 h. Filtration and evaporation afforded an oil that was purified by column chromatography over silica gel with light petroleum-diethyl ether (1 :1) to afford compound 9a (1 25 mg, 70), identical in all respects with that obtained previously. 2-Hydroxyphenylphosphinic acid 10a Compound 9a (1.0 g, 3.5 mmol) was dissolved in absolute ethanol (12.5 cm3) and 4 mol dm-, hydrochloric was added to the solution.The mixture was heated at 100 "C for 3 h and then evaporated to afford an oil that was co-evaporated with water (4 x 25 em) and absolute ethanol (4 x 25 an3).The resulting oil crystallised on storage and was recrystallised from ethyl acetate to give compound 10a (0.49 g, 90) as white needles; v,a,(Nujol)/cm-l 3100 (OH), 2410 (PH), 1600 and 1440; G,(CD,),SO, 400 MHz 7.53 (1 H, d, JpH 560.2, PH), 7.50 (1 H, ddd, J6p 9.2, J5.6 7.5, J4.6 1.7, 6-H), 7.40 (1 H, dt, J4,5 7.5, J4.6 1.7, 4-H), 6.92 (1 H, dt, J5,67.5, J2.0, 5-H) and 6.87 (1 H, m, 3-H).6-Fluoro-(2-hydroxyphenyl)phosphinic acid 10b Similarly, 9b (1.0 g, 3.3 mmol) gave a product which was recrystallised from toluene to afford compound 10b (520 mg, 90) as colourless needles; vmaX(Nujol)/cm-' 3 100 (OH), 2420 (PH), 1590, 1440 and 1100 (CF); SH(CD,),SO, 400 MHz 7.73 (1 H,d, JpH591.0,PH),7.44(1 H,dt, J8.25,7.16,4-H),6.72(1 H, m, H-3) and 6.69 (1 H, m, 5-H). 6-Chloro(2-hydroxyphenyl)phosphinic acid 1Oc Similarly, 9c (1.0 g, 3.1 mmol) gave a product which was recrystallised from toluene-light petroleum (1 :3) to afford compound 1Oc (300 mg, 50) as a white solid; v,,,(Nujol)/cm-' 3000 (OH), 2400 (PH), 1600, 1400 and 780 (CCl); 6,-(CD,),SO, 400 MHz 10.4 (1 H, br s, OH), 7.78 (1 H, d, JpH 597.1, PH), 7.42(1 H, t, J8.2, 4-H), 6.96 (1 H, dd, J8.35,4.05, 5-H) and 6.84 (1 H, dd, J 7.85,4.55, 3-H).6-Bromo-(2-hydroxyphenyl)phosphinicacid 1Od Similarly, 9d (2.0 g, 5.5 mmol), gave a product which was recrystallised from toluene-light petroleum (3 :1) to afford compound 10d (l'.O g, 77) as a white solid; v,,,(Nujol)/cm-l 3200 (OH), 2420 (PH), 1590 and 1440; dH(CD,),SO, 400 MHz 8.0 (1 H, br s, OH), 7.69 (1 H, d, JpH 597.8, PH), 7.33 (1 H, t, J8.15, 4-H), 7.13 (1 H, ddd, J7.85, 4.5, 0.6, 5-H) and 6.86 (1 H, dd, J8.35,4.0, 3-H). Ethyl diethoxymethyl(2-naphthy1)phosphonate 11 2-Naphthol (14.4 g, 0.1 mol) and 1 (19.6 g, 0.1 mol) were dissolved in a mixture of dry THF-CCl, (1 :5) (100 cm3) at room temperature.Dry triethylamine (10.0 g, 0.1 mol) was added dropwise to the mixture the internal temperature of which was maintained at 30 "C by means of an ice-bath. The mixture was then stirred at room temperature for 4 h, filtered and the filtrate washed with cold 1 mol dm-3 hydrochloric acid, 1 mol dm-, aqueous sodium hydroxide and water and dried (MgSO,). Evaporation followed by distillation on a wiped-wall distillation unit at 140 "C/O. 1 mmHg afforded compound 11 (26.4 g, 78) as a clear oil; v,,,(thin film)/cm-' 1600/1510 (Ar), J. CHEM. SOC. PERKIN TRANS. 1 1995 1280 (PO), 1210and 1060;S,(CDCl3, 90 MHz) 7.9-7.7 (4 H, m, Ar), 7.6-7.3 (3 H, m, Ar), 4.95 (1 H, d, J7.2, PCH), 4.5-4.2 (2 H, m, CH,), 4.1-3.6 (4 H, m, CH, x 2) and 1.25 (9 H, m, CH, x 3); Gp(CDC1,, 36 MHz) 10.8.LDA-induced rearrangement of 11 A solution of lithium diisopropylamide (10 mmol) in dry tetrahydrofuran (THF) (10 cm3) was added dropwise to a solution of compound 11 (3.4 g, 10 mmol) in THF (40 cm3) at -70 "C under argon. The reaction mixture was stirred at -70 "C for 1 h and then at room temperature for 1 h. The reac- tion mixture was poured into saturated aqueous ammonium chloride (50 cm3) and extracted with ethyl acetate. The organic extracts were dried (MgS04) and evaporated to give the crude product as an oil. Purification by column chromatography over silica gel eluting with light petroleum-diethyl ether (3 :1) afforded ethyl diethoxymethyl(2-hydroxy-1-naphthyl)phosphi-nate 13 (0.3 g, 9) as an oil; GH(CDCl,, 90 MHz) 13.1 (1 H, s, OH), 8.4-7.5 (6 H, m, Ar), 5.5 (1 H, d, J 10.8,PCH), 4.8-3.6 (6 H, m, CH, x 3) and 1.3 (9 H, m, CH, x 3);Gc(CDC13,22.5 MHz) (quaternary carbons) 169.5 (d, Jc-2,p4.3, C-2), 137.3 (d, Jc-8,p 9.5, C-8), 132.0 (d, Jc-4,p11.0,C-4) and 102.5(d, Jc-l,p 117.0, C-1); Gp(CDCI,, 36 MHz) 42.6.Additionally obtained was ethyl diethoxymethyl(2-hydroxy-3-naphthyl)phosphinate12 (0.6 g, 18)as a white solid, mp 108-1 12 "C; G,(CDCl,, 90 MHz) 10.7 References 1 E. K. Baylis, C. D. Campbell and J. G. Dingwall, J. Chem. Soc., Perkin Trans., 1, 1984,2845. 2 E. P. 0181833 (Ciba-Geigy PLC) CA: 106 P18814k. 3 M. C. Allen, W.Fuhrer, B. Tuck, R. Wade and J. M. Wood, J. Med. Chem., 1989,32, 1652. 4 A. C. Baillie, C. L. Cornell, B. J. Wright and K. Wright, Tetrahedron Lett., 1992,33, 5133. 5 E. P. 0307362 (Ciba-Geigy PLC) CA: I1 1 P78366d. 6 M. J. Gallagher and H. Honegger, Aust. J. Chem., 1980,33,287. 7 J. G. Dingwall, J. Ehrenfreund and R. G. Hall, Tetrahedron, 1989, 45, 3787. 8 A. W. Frank, Chem. Rev., 1961,61, 389. 9 T. Hirao, J. Masunaga, Y. Ohshiro and T. Agawa, Synthesis, 1981, 56. 10 Y. Xu and J. Zhang, Synthesis, 1983, 377. 11 Y. Xu, Li. Zhong, X. Jiazhi, G. Huiju and H. Yaozeng, Synthesis, 1984,781. 12 L. S. Melvin, Tetrahedron Lett., 1981,22, 3375. 13 R. C. Cambie and B. D. Palmer, Aust. J. Chem., 1982,35827. 14 B. Dhawan and D. Redmore, J. Org. Chem., 1984,49,4018; Synth. Commun., 1985, 15, 41 1; Phosphorus Sulphur and Silicon, 1989,42, 177. 15 D. A. Caste1 and S. P. Peri, Synthesis, 1991,691. 16 S. Masson, J.-F. Saint-Clair and M. Saquet, Synthesis, 1993,485. 17 K. Diemert, W. Kuchen, P. Staniek and H. Wunderlich, Poster Abstract, Proceedings of the International Conference on Phos- phorus Chemistry, Bonn, Germany 1986, Phosphorus and Sulphur, 3.8 (6 H, m, CH, x 3) and 1.3 (9 H, m, CH, x 3); Gc(CDC13, 22.5 MHz) (quaternary c) 158.2 (d, Jc-z,p5.5, C-2), 138.4 (d, Jc-8.p2.0, C-8), 127.9 (d, Jc-4.p13.0, C-4) and 113.0 (d, Jc-3,p 1 16.7, C-3); Gp(CDCI3, 36 MHz) 36.3. Acknowledgements This work was, in part, presented for a Post-graduate Research Diploma of Manchester Polytechnic (Manchester Metro-politan University). s.N. L. Bennett is grateful to Dr G. V. Garner for encouragement and support. 1987,820.(lH,s,OH),8.4-7.8(6H,m,Ar),5.2(1H,d,J7.9,PCH),4.8-18 K. Diemert, personal communication. 19 B. Dwahan and D. Redmore, J. Org. Chem., 1991,56,833. 20 V. M. Plets, J. Gen. Chem. USSR (Engl. Transl.), 1937, 7, 84. 21 R. Michaelis and A. Schenk, Liebigs Ann. Chem., 1890,260. 22 T. Weil, B. Prifs and H. Erlenmeyer, Helv. c'him. Acta, 1953, 36, 1314. 23 I. M. Klotz and R. T. Morrison, J. Am. Chem. Soc., 1947,69,473. Paper 4/06777K Received 7th November 1994 Accepted 4th January 1995
机译:J. CHEM. SOC. PERKIN, TRANS. 1, 1995 二乙氧基甲基次膦酸乙酯与芳基溴化物和酚反应产生的芳基膦酸的新合成 Stuart N. L. Bennett 和 Roger G. Hall*.?Central Research Laboratories, Ciba Geigy PLC, Hulley Road, MacclesJield, Cheshire SKlO 2NX, UK 次磷酸合成子二乙氧基甲基次膦酸乙酯 1 的化学性质已被进一步开发,以提供有效的芳基膦酸 6 和 2-羟基苯基膦酸 10 的新途径。在一种方法中,使用了钯(0)催化的P-H插入;第二种方法利用芳基膦酸盐的锂基邻位重排,该重排很容易从1与酚的Atherton-Todd反应中制备。在这两种情况下,膦酸都是在最后一步通过酸脱保护获得的。我们对合成功能性次膦酸 [RP(O)(OH)H] 的兴趣有几个原因。这些化合物作为生物学上重要的羧酸(例如a-和y-氨基酸)的近似物,已经显示出有趣的生物活性。1,2 此外,这种官能性次膦酸很容易通过氧化成相应的膦酸,或通过Arbuzov或Michael加成化学,转化为不对称的次膦酸3,4,这突显了它们作为重要合成中间体的效用。次磷酸 5*6 的合成子,例如二乙氧基甲基次膦酸乙酯 1 先前已被证明是合成功能性脂肪族膦酸的有价值的组成部分。次膦酸盐 1 发生典型的 P-H 物种保护反应,因为二乙氧基甲基允许在中间体 2 上进行官能团转化,然后最后的脱保护步骤再生次膦酸官能团,导致产物 3(方案 1)。保护H-P--H * (EtOkCH-P-HI (EtO)$H, TFA I OH OEt 1 chemistryI deprotection H-P-R (EtOhCH-P-RI I OH OEt 3 2 方案 1 作为我们对此类试剂效用研究的延续,我们现在报告了 1 在功能芳基膦酸合成中的应用。描述了两种方法;钯(0)催化的芳基溴化物偶联和碱诱导的酚类膦酸盐重排。现有的芳基膦酸途径通常涉及合成相应的二氯膦和随后的水解(方案2)。所采用的反应条件加上中间体处理的困难,使得替代方法具有吸引力。(I) PdO催化的P-H插入我们发现,一种四(三酚1膦)钯7 现住址:Ciba Crop Protection, CH 4002 Basel, Switzerland。P02H2 y2 I PC13 Q -QAlC13 或 FeC13 a H20 R R R 方案2 (0)-芳基溴4a-g与二乙氧基甲基膦酸乙酯1的催化反应得到芳基次膦酸酯5a-g,收率良好至极好(方案3)。用 4 mol dmP3 盐酸水解酯,直接得到芳基膦酸 6a-e。类似的方法以前也被用于合成芳基膦酯、二取代次膦酯和叔膦氧化物。' 二乙氧基甲基PH保护基足够稳定,允许在酸脱保护之前进一步精析芳基环上的取代基,从而提供更广泛的取代芳基膦酸。因此,硝基5a,b和氰基5f,g取代的芳基次膦可以很容易地被还原(H,超过Pd/C)以产生相应的氨基5h,i或氨甲基5j,k取代的次膦酸盐(方案4)。如上所述脱保护得到相应的次膦酸分别为6f、g和6h、i。在未受保护的PH功能存在下,这种氢解会因金属催化剂的中毒而受到阻碍。(2)膦酸盐-次膦酸盐重排 文献中已有碱基诱导的酚类磷酸酯重排得到2-羟基苯基膦酸盐的报道。12-' 2-羟基苯基膦酸 10,在文献中几乎不为人知。母体化合物2-羟基苯基膦酸10a的X射线结构以海报形式呈现。17 该化合物是水杨环酸的近似物,是“*通过将由适当保护的 2-溴苯酚衍生的格氏试剂与氯双(二烷基 1 氨基)膦偶联,随后水解由此形成的芳基膦制备的。我们发现,在Atherton-Todd条件下,酚类7a-d很容易被1磷酸化,从而获得良好的芳基膦酸盐8a-d。在-70“C下用LDA在四氢呋喃中处理这些膦酸盐,得到重排产物2-羟基苯基次膦酸盐9a4。如上所述,用无机酸水解次膦酸盐,得到高收率的结晶芳基膦酸10a-d(方案5)。母体重排次膦酸盐9a的产量令人失望。试图通过改变反应条件来改善这一点,例如碱的选择、温度、 1146 J. CHEM. SOC. PERKIN TRANS. 1 1995 4 5 6 R' R2 收率 (%) 收率 (%) a NO, H 5a 89 6a 88 b H NO2 5b 67 6b 83 c NMe, H 5c 65 6c 74 d Me H !%I72 6d 53 e Ac H 5e 89 6e 65 f CN H 5f 73 gH CN 5g 75 方案 3 试剂条件:i,(EtO),CHP[(O)OEt]H 1,[Pd(PPh,),]1-10 h,90-100“C;ii,4 mol dm-,HCl的加入顺序没有改善工艺。相应的磷酸盐-膦酸盐重排使得率更高。9a产率低的一个原因可能是邻位锂物种对缩醛C-H质子的竞争性去质子化,导致分解产物(见下文)。uecornpowuon* 产品 根据烷基次膦酸酯的早期结果,可以很容易地排除LDA对乙缩醛C-H的直接去质子化~.~ 为了证明这一假设,进行了氘淬灭实验。在-70“C下用LDA产生8a的阴离子,然后立即用氘代乙酸淬灭,得到与8a相同的产物,只是在对应于缩醛C-H的'H NMR谱图中的信号大大减少。在第二个 ovtho 导向基团中,如在 8b4 中,锂有望得到更强的配位,该过程被抑制,有利于重排,导致次膦酸盐 9b-d 的产率更高。重排产物9b-d的区域化学是通过对相应酸的NMR实验确定的(见表1和表2)。当P-H官能团作为二乙氧基甲基受到保护时,可以降低氯n1 II,CH(OEt)2OH I ?-pNOEt 7 10 9 7 R 收率 (%)8 收率 (%) 9 收率 (%) 10 a H 90 15 90 b c Fc1 74 77 78 63 90 50 d Br 78 52 77 方案 5 试剂和条件: i, 化合物1 Et,N, CCl,;ii,LDA,THF,-70“C;iii,用4mol dm-3 HCl、90-100“C取代基在次膦酸盐9c(HJPd-C)中得到9a的高收率,从而规避了先前获得的低收率。(3)2-萘酚衍生物 我们有兴趣研究2-萘酚衍生膦酸盐重排的区域选择性,在这项工作进行这项工作时,文献中还不知道这一点。2-萘酚与1的磷酸化得到膦酸盐11,在用LDA处理时,得到2:l次膦酸盐12和13的混合物,同样收率为27%(方案6)。随后,发表了一项类似的研究,报告了类似的磷酸盐-膦酸盐重排。作者获得了相似的2:1比例的异构体,尽管只有主要异构体被表征。结论 二乙氧基甲基次膦酸乙酯1可用于制备取代芳基膦酸。这种稳定且易于制备的次磷酸合成子的效用扩大,强调了它们在合成有机磷化学中的关键作用。5 h-k 6 R' R2 R' R2 收率 (%) R' RZ 收率 (%) a NO, H h NH, H 70 f NH, H 75 b f g H CN H NO 2 H CN i jk H CH,NH, H NH, H CH,NH, 92 75 90 g h i H CH,NH, H NH, H CH,NH, 76 90 79 方案 4 试剂和条件: i, Pd-C, H, EtOH;ii, 4 mol dm-j HCI, 9S100 “C J.CHEM. SOC. PERKIN TRANS. 1 1995 11li omo> P -CH(OEt)2 'OEt 12 13 方案 6 Reugenrs 和条件:i、LDA、THF、-70”C 实验 引用分析和光谱数据的所有化合物均通过 TLC 和 31PNMR 均相。TLC在默克高性能硅胶6OF,,,预涂玻璃板(10 x 5 cm)上进行。通过紫外光或喷洒碱性高锰酸钾水溶液对产品进行可视化。在硅胶60(70-230目ASTM)(Merck)上进行制备色谱。溶剂在使用前使用D.D.Perrin和W.L.F.Armarego,Pergamon Press中描述的程序进行常规干燥。 熔点在BiichiS型设备上进行,未经校正。'H NMR波谱记录在工作频率为400.13 MHz的Bruker AC400波谱仪或工作频率为89.55 MHz的JEOL FX-90Q波谱仪上。 内部参考Me,%(CDC1溶液)和外部参考(三甲基硅烷基1)丙酸钠(D,O溶液)。上述仪器分别记录了工作频率为100.614和22.49 MHz的I3C NMR谱图(内部参考了I3CDCl3),31P NMR谱图分别记录在161.91 MHz和36.21 MHz的频率下(表1 400 MHz光谱数据(6,)用于10 a-d GH([ZH,]-DMSO) 化合物 3-H 4-H 5-H 6-H P-H 表2 100 MHz波谱数据(S,)用于次膦酸 1Oa-d 化学相变 Gc([ZH,]-DMSO) 化合物 C-1 c-2 c-3 c-4 c-5 C-6 1Oa 118. 32 159.92 116.02 134.07 119.03 131.59 (4 (4 (s) (s) (4 (410b 104.83 162.21 112.92 135.54 105.81 163.54 (W (dd) (dd) (4 (W (d) 1OC 113.27 163.30 116.34 135.21 120.57 135.68 (4 (4 (4 (4 (4 (41Od 114.67 163.53 116.93 135.44 124.01 124.52 (4 (s) (4 (4 1147 外部引用 H,PO,对于CDCl和D,O溶液).19FNMR谱图是在JEOL FX-90Q仪器上获得的,操作浓度为84。25 MHz(外部以CFC1为基准)。TR光谱在Perkin-Elmer 88 1光栅分光光度计上测量为薄膜或Nujol mulls。仅引用显着吸收。微量分析由曼彻斯特大学仪器、研究和咨询服务处获得,芳基膦酸6和10的物理分析数据总结于表3。乙基二乙氧基甲基(4硝基苯基)次膦酸酯5a 将二乙氧基甲基次膦酸乙酯1(3.9 g,20 mmol)、4-溴硝基苯4a(4.0 g,20 mmol)、干三乙胺(4.0 g,40 mmol)、甲苯(15 cm3)和四(三苯基膦)钯(o)(2.3 g,2 mmol)的混合物密封在氩气下的厚壁管中。将混合物在90“C下加热1小时,在此期间反应混合物变得澄清,然后沉积沉淀物(三乙胺氢溴酸盐)。将反应混合物倒入乙酸乙酯(50cm3)上,过滤并蒸发得到油。用乙醚作为洗脱液,在硅胶上通过柱层析纯化得到化合物5a(5.7g,89%)作为油;v,,,(薄膜)/cm-' 1600 (Ar)、1520、1350 (NO)、1440 (ArP)、1240 (PO) 和 1060 (POAlk);G,(CDCl,,90 MHz),8.4-7.95(4 H,m,ArH),4.85(1 H,d,J 7.2,PCH),4.4-4.0(2 H,m,POCH),4.0-3.5(4 H,m,CH,x 2)和1.3(9 H,m,CH3 x 3);SP(CDCI3, 36 MHz) 28.8.二乙氧基甲基(3-硝基苯基1)次膦酸乙酯5b该化合物类似地由1(2.0g,10mmol)和3-硝基溴苯4b(2.0g,10mmol),在90°C下加热6小时。通过柱层析在硅胶上纯化,用乙醚洗脱得到化合物5b(2.1g,67%)作为油;vmax(薄膜)/cm-' 1600 (Ar)、1530、1350 (NO、)、1230 (PO) 和 1060 (POAlk);GH(CDCIj,90 MHz) 8.8-8.25 (3 H, m, ArH), 7.95-7.6 (1 H, m, ArH), 4.9 (1 H, d, J 7.2, PCH), 4.5-3.5 (6 H, m, CH, x 3) 和 1.3 (9 H, m, CH, x 3);G,(CDCl,, 36 MHz) 28.3.乙基二乙氧基甲基(4-N-N二甲氨基苯基)次膦酸酯5c 该化合物由1(3.9 g,20 mmol)和4-溴-N,N-二甲基苯胺4c(4.1 g,20 mmol)在100“C下加热10 h制备。通过柱色谱法在硅胶上用乙酸乙酯-乙醚(1:1)洗脱得到化合物5c(4.1g,65%)作为油;v,,,(薄膜)/cm-' 1600 (Ar)、1440、1230 和 1040;GH(CDCl,, 90 MHz), 7.7(2H,m,ArH),6.7(2H,dd,ArH),4.75(1H,d, J7.2,PCH), 4.4-3.4(6H,m,CH2 x 3),3.0(6H,s,NCH3 x 2)和1.3(9H, m, CH, x 3);总泵(CDCl,, 36 MHz) 32.8.碳磷耦合常数(J/Hz)[碳氟(J/Hz)] C-1P C-2P C-3P C-4P C-5P C-6P 128.8 4.82 7.75 -12.98 7.85 _-121.24 7.74 6.94 -5.23 C21.33) C1.611 C3.121 C11.261 C22.031 C246.801 125.9 3.01 7.44 -6.13 3.32 127.2 -7.34 -7.24 4.95 1148 J. CHEM. SOC. PERKIN TRANS. 1 1995 表3 芳基次膦酸6a-i的物理分析数据, 1Oa-d 找到值 (%) (必需) MP ( T/OC) 31PNMR Compd. (Lit.) C H N P G(so1vent) JPHIHZ 6a 175-177 38.55 3.40 7.30 16.40 13.7 562.0 6b (134)21 163-168 (38.50) 38.45 3.25 3.00 7.50 7.30 (16.55) 16.20 13.0 (['H,-]DMSO) 572.5 6c 152-154 (38.50) 51.40 3.25 6.35 7.50 7. 45 (16.55) 17.0 16.1 (*H,]-DMSO) 563.0 6d (162)22 102-103 (51.90) 53.70 6.55 5.60 7.55 (16.75) 19.8 18.5(D2O) 523.9 6e (1 04)2 115-118 (53.85) 52.00 5.8 1 4.80 (19.85) 16.55 (D20-NaOD) 20.3 570.0 6f 171-174 (52.2) 45.70 4.95 5.10 8.80 (16.80) 19.50 17.4(D2O) 540.0 6g 6h (169)24 240-244 > 250 (45.85) 45.65 (45.85) 48.90 5.15 5.0 5.15 5.80 8.90 8.80 8.90 (19.70) 19.70 (19.70) 18.1 19.9 17.8 (D2O) (D2O-DCl) 577. 0 529.2 6i > 250 (49.15) 48.90 5.90 5.70 8.20 8.00 (18.1) 18.3 17.7 P2O) 530.0 (49.15) 5.90 8.20 (18.1) (D@) 1Oa 128-1 32 45.5 4.3 (45.6) 4.45 10b 105 41.15 3.3 (40.49) 3.45 1oc 112 37.05 2.9 (37.4) 3.15 1Od 122- 125 30.25 2.6 (30.4) 2.55 二乙氧基甲基(4-甲基苯基1)膦酸乙酯 5d该化合物同样由1(3.9 g,20 mmol)和4-溴甲苯4d(3.4 g,20 mmol)制备,在100“C下加热1 h.通过柱层析纯化硅胶,用乙醚洗脱得到化合物5d(4.1 g,72%)作为油;v,,,(薄膜)/cm-' 1605 (Ar)、1405、1240 (PO) 和 1060 (POAlk);G,(CDCl,,90 MHz),7.8(2 H,m,ArH),7.4(2 H,m,ArH),4.8(1 H,d,J7.2,PCH),4.5-3.5(6 H,m,CH,x 3),2.45(3 H,s,ArCH)和1.3(9 H,m,CH,x 3);G,(CDCl,, 36 MHz) 31.6.4-乙酰基苯基(二乙氧基甲基)次膦酸乙酯5e该化合物由1(3.9g,20mmol)和4-溴苯乙酮4e(4.0 g,20 mmol),在100°C下加热1小时。通过柱层析在硅胶上用乙酸乙酯-乙醚(1:1)洗脱得到化合物5e(5.6g,89%)作为油;v,,,(薄膜)/cm-' 1700 (CO)、1440 (ArP)、1260、(PO) 和 1060 (POAlk);G,(CDCl,,90 MHz),8.2-7.8(4H,m,ArH),4.8(1 H,d,J7.2,PCH),4.45-3.75(6 H,m,CH,x 3),2.6(3 H,s,COCH)和1.5-1.1(9 H,m,CH,x 3);Gp(CDC1,, 36 MHz) 30.3.4-~亚苯基(二乙氧基甲基)次膦酸乙酯5f 该化合物由1(3.9 g,20 mmol)和4-溴苯腈4f(3.7 g,20 mmol)在90°C下加热1小时制备。通过柱层析在硅胶上用乙醚洗脱得到化合物5f(4.4g,75%)作为油;v,,,(薄膜)/cm-' 2240, (CN), 1400, 1230, (PO) 和 1060 (POAlk);G,(CDCI,,90 MHz) 8.2-7.7 (4 H, m, ArH), 4.9 (1 H, d, J7.2, PCH), 4.5-3.5 (6 H, m, CH, x 3) 和 1.35 (9 H, m, CH, x 3);G,(CDCl,, 36 MHz) 26.3.3-~亚苯基(二乙氧基甲基)次膦酸乙酯 5g 该化合物类似地由1(3.9 g,20 mmol)和3-溴苯腈4f(3.7 g,20 mmol)在100“C下加热1 h制备。柱层析纯化 19.6 22.3 590.0 (1 9.6) 17.6 14.5-14.4(D2O) 591.0 (17.6) 16.2 18.5(J-320) 591.0 (16.1) 13.15 13.4(D2O) 556.5 (13.1) (D20-NaOD)硅胶用乙醚洗脱得到化合物5g(4.3 g,73%)作为油;v,,,(薄膜)/cm-l 2240、(CN)、1240、(PO)和1060(POAlk);G,(CDCl,, 90 MHz), 8.0-7.6 (4 H, m, ArH), 4.9 (1 H, d, J 7.2, PCH), 4.5-3.6 (6 H, m, CH, x 3) 和 1.3 (9 H, m, CH, x 3);G,(CDCl,, 36 MHz) 28.5.4-氨基甲基苯基(二乙氧基甲基)次膦酸乙酯 5j 腈5f(0.6 g,2 mmol)在乙醇(25 cm3)和氯仿(1 cm3)中的溶液在40 psi和45“C下用氢气还原超过5%Pd/C(0.2 g)。24小时后,过滤并蒸发溶剂,得到粗产物为盐酸盐。将盐溶于THF中,用三乙胺处理,过滤并蒸发成油。用5%甲醇的氯仿溶液洗脱硅胶,通过柱层析纯化得到化合物5j(450mg,75%),为无色油;v,,,(薄膜)/cm-' 3400br (NH,), 1600, 1220 和 1060 (POAlk);S,(CDCI,,90 MHz) 7.9-7.6 (4 H, m, ArH), 6.7 (2 H, br s, NH,), 4.75 (1 H, d, J 7.6, PCH), 4.2 (2 H, s, ArCH,), 4.34.0 (2 H, m, CH,OP), 4.0-3.5 (4 H, m, CH, x 2) 和 1.2 (9 H, m, CH, x 3);G,(CDCI,, 36 MHz) 30.9.3-氨基甲基苯基(二乙氧基甲基)次膦酸乙酯 5k 该化合物的制备方法与上述类似,将腈5g还原30小时。粗产物用柱层析纯化,用5%甲醇的氯仿溶液洗脱,得到回收的起始原料5g(2.8g,68%),然后得到所需化合物5k(1.2g,29%),为无色油;v,,,(薄膜)/cm-' 3350br (NH,), 1230 和 1060 (POAIB);G,(CDCl,, 90 MHz), 8.0-7.3 (4 H, m, ArH), 5.25 (2 H, br s, NH,), 4.8 (1 H, d, J7.5, PCH), 3.95 (2 H, s ArCH,), 4.4-3.5 (6 H, m, CH, x 3) 和 1.2 (9 H, m, CH, x 3);G,(CDCl,, 36 MHz) 31 -2.4-氨基苯基(二乙氧基甲基)次膦酸乙酯 5h 化合物5a(1.6 g,5 mmol)在无水乙醇(25 cm3)中的溶液在40 psi下用氢气还原超过5%Pd-C(0.2 g)。24小时后,过滤反应混合物,并浓缩J. CHEM. SOC. PERKIN TRANS. 1 1995。用10%甲醇的乙酸乙酯溶液洗脱硅胶,通过柱层析纯化,得到粘稠油状化合物5h(1.O g, 70%);v,,,(薄膜)/cm-' 3350br (NH,), 1640, 1600, 1440, 1220 和 1060 (POAlk);G,(CDCl,,90 MHz),7.7-7.2(2 H,m,ArH),6.6(2 H,dd,ArH),4.7(1 H,d,J 7.6,(PCH),4.2-3.5(8 H,m,CH,x 3和NH),和1.2(9 H,m,CH,x 3);G,(CDCl,, 36 MHz) 32.4.3-氨基苯基(二乙氧基甲基)次膦酸乙酯5i该化合物的制备方法与上述类似,化合物5b(1.5g,4.7mmol)被还原为无色固体(1.2g,92%),mp82“C;v,,,(薄膜)/cm-' 3370br (NH,), 1635,1600,1440,1230 和 1060 (POAlk);d,(CDCl,,90 MHz),7.3-7.0(3H,m,ArH),6.9-6.7(1H,m,ArH),4.75(1H,d,J7.2,PCH),4.4-3.5(8 H,m,CH,x 3和NH),和1.25(9 H,m,CH,x 3);G,(CDCl,, 36 MHz) 31.6.4硝基苯基膦酸6a 将5a(0.3g,0.95mmol)在4 mol dmP3盐酸(20 cm3)中的溶液在100“C下加热4小时,然后蒸发得到油,油与水共蒸发得到固体。乙醇重结晶得到化合物6a(0.15 g, 88%),为黄色结晶;v,,,(Nujol)/cm-' 2420 (PH)、1540、1350 (NO)、1200 和 1080;GH[(CD3),S0 90 MHz],9.0 (1 H, br s, POH), 8.48.2 (2 H, m, ArH), 8.15-7.8 (2 H, m, ArH) 和 7.6 (1 H, d, J 562, PH).3-硝基苯基膦酸6b通过用4 mol dm-盐酸(25 cm3)处理,类似地从5b(1.0 g,3.2 mmol)制备该化合物,得到黄色固体(0.50 g, 83%);v,,,(Nujol)/cm-' 2380 (PH), 1530 和 1350 (NO,);G,[(CD,),SO, 90 MHz], 7.9 (1 H, br s, POH), 8.67.4 (4 H, m, ArH) 和 7.6 (1 H, d, J 572, PH)。4N,N-二甲氨基苯膦酸6c 将5c(3.2g,10.2mmol)在4mol dmP3盐酸(30cm3)和乙醇(30cm3)中的溶液加热3小时,然后蒸发,得到油。这在水和乙醚之间分配。通过用水洗脱的离子交换柱(Dowex 50-W H+形式)分离、浓缩和纯化水相。蒸发适当的馏分得到化合物6c(1.4 g,74%),为无色固体;v,,,(Nujol)/cm-' 2380 (PH), 1600;SH(D20,90 MHz),8.3-7.8(4 H,m,ArH),7.8(1 H,d,J563,PH)和3.5(6 H,s,NCH,x 2)。4甲基苯基膦酸6d 将5d(3.6 g,12.6 mmol)在4 mol dm-、盐酸(30 cm3)和乙醇(20 cm3)中的溶液回流加热6 h。溶剂蒸发和与水共蒸发(4 x)得到粗固体,将其重结晶[EtOAc-轻质石油(bp 60-80“C),1:51得到化合物6d(1.O g, 53%)为无色固体;vmax(Nujol)/cm-' 2420 (PH), 1600 和 1460;G,(D,O/NaOD,90 MHz),7.6-7.0(4 H,m,ArH),7.3(1 H,d,J 524,PH)和2.2(3 H,s,CH,).4乙酰基苯基膦酸6e类似地由5e(0.5g,1.6mmol)、4mol dm-3盐酸(10 cm3)和乙醇(3 cm3)制备。重结晶(甲苯)得到化合物6e(0.2 g,65%)为白色晶体;v,,,(Nujol)/cm-l 2400 (PH)、1660、1600 和 1250;6,(D,O,90 MHz)7.9-7.3(4H,m,ArH),7.5(1 H,d,J 570,PH)和2.4(3 H,s,CH)。将4-氨基苯基膦酸6f在4 mol dmP3盐酸1149酸(25 cm3)中的溶液在4 mol dmP3 (25 cm3)中加热5h,反应6 h。蒸发和与水共蒸发(2 x)得到粗产物盐酸盐。将盐溶于乙醇中,并滴加到溶液中。过滤掉所得沉淀,得到化合物6f(1.2g,75%)为无色固体;v,,,(Nujol)/crr-l 3400br (NH,) 和 2375 (PH);GH(D,O,90 MHz) 8.7-7.8 (4 H, m, ArH) 和 7.8 (1 H, d, J 540, PH)。3-氨基苯基膦酸 6g 类似地,次膦酸盐 5i(2.2 g,7.6 mmol)得到化合物 6g(0.9 g,76%);v,,,(Nujol)/cm- '3950br (NH,) 和 2375 (PH);d,(D,O-DCl,90 MHz),7.9-7.4(4 H,m,Ar-H)和7.25(1 H,d,J 577,PH)。4氨甲基苯次膦酸6h 将5j(0.4g,1.3mmol)的溶液溶于4mol dm-、盐酸(20cm3)中加热至100“C6小时。溶剂的蒸发和残留物与水的共蒸发(4 x)得到粗产物,通过离子交换色谱法(Dowex 50-W H+形式)纯化,水为洗脱液。化合物6h分离为白色粉末(0.2 g,90%);v,,,(Nujol)/cm-' 3440, 3400br (NH,) 和 2360 (PH);d,(D,O,90 MHz),7.8-7.3 (4 H,m,ArH),7.28 (1 H,d,J 592.2,PH)和4.2(2 H,s,CH)。3-氨甲基苯基膦酸6i 类似地,化合物5k(1.4g,4.6mmol)得到化合物6i(0.5g,79%);vmax(Nujo1)/cm-' 3350, 3280br (NH,) 和 2360 (PH);&(D,O,90 MHz),7.8-7.2 (4 H,m,ArH),7.28 (1 H,d,J 530,PH)和4.15 (2 H,s,CH)。二乙氧基甲基(苯1)膦酸乙酯8a 将苯酚7a(1.9g,20mmol)和1(3.9g,20mmol)在四氯化碳(50cm3)中的溶液在氩气下冷却至0°C,然后在10分钟内滴加干燥的三乙胺(2.0g,20mmol)。加热至23“C并搅拌0.5h后,过滤混合物。滤液用冷的1 mol dmP3盐酸、1 mol dm-、氢氧化钠水溶液和盐水洗涤,干燥(MgSO,)并蒸发,得油状粗品。在擦壁蒸馏装置上以 80 “C/O.1 mmHg 蒸馏提纯,得到化合物 8a(5.1 g,90%)作为清油;v,,,(薄膜)/cm-' 1590、1500、1260、1200 和 1060;G,(CDCl,, 90 MHz) 7.3 (5 H, m, ArH), 4.95 (1 H, d, J7.2, CHP), 4.5-4.2 (2 H, m, CH,), 4.0-3.8 (4 H, m, CH, x 2) 和 1.3 (9 H, m, CH, x 3);G,(CDCl,, 36 MHz) 10.5.乙二乙氧基甲基(3-氟苯基1)磷酸酯8b 该化合物由3-氟苯酚7b(5.6g,50mmol)和1(9.8g,50mmol)类似制备。在90“C/O.l mmHg的擦壁蒸馏装置上蒸馏,得到化合物8b(1 1.4 g,74%);v,,,(薄膜)/cm-' 1260, 1240, 1 100 和 1040;G,(CDCl,, 90 MHz) 7.54.8 (4 H, m, ArH), 4.95 (1 H. d, J 7.2 CHP), 4.55-4.2 (2 H, m, CH,), 4.1-3.8 (4 H, m, CH, x 2) 和 1.3 (9 H, m, CH, x 3);Gc(CDC13, 22.5 MHz) 165.0 (d, JC-,,F 245.8,C-3), 154.1 (dd,Jc-l,p8.2, Jc-i,Fll.O,C-l), 132.8(d,J22.0, C-4), 110.5 (dd, Jc-2.p 4.1, JC-2.F 24.7, C-2), 101 .O(d,Jc.p 210.1,PCH),66.5(d,JC,,5.5,POCH,)65.7(d,Jc,,6.9,PCHOCH,),18.3(d,Jc,p5.5,POCH,CH,)和17.0(s,CH,);G,(CDCl,, 36 MHz) 10.6;&(CDCl,, 84 MHz) -I1 1.2.3-氯苯基(二乙氧基甲基)磷酸乙酯8c 类似地,3-氯苯酚7c(12.8 g,0.1 mol)和1 (1 9.6 g,0.1 mol)在100“C/O.l mm蒸馏后得到化合物8c(24.8 g,77%);1 毫米;v,,,(薄膜)/cm-' 1590、1260、1210、1050 和 780;G,(CDCl,, 90 MHz) 7.4-7.1 (4 H, m, ArH), 1150 J.CHEM. SOC. PERKIN TRANS.I 1995 4.95(1 H,d,J7.2,PCH),4.5-4.2(2H,m,CH2),4.l-3.8(4H,m,轻石油二醚(2:1)得到化合物9d(3.8 CH,x 2)和1.3(9 H,m,CH,x 3);Gp(CDCl,, 36 MHz) 10.6.3-溴苯基(二乙氧基甲基)膦酸乙酯8d 类似地,3-溴苯酚7d(8.6 g,50 mmol)和1(9.8 g,50 mmol)得到化合物8d(21.7 g, 78%) 在 100 “C/O 蒸馏后为澄清油。我毫米汞柱;v,,,(薄膜)/cm -l, 1250, 1210, 1050 和 710;GH(CDC1,, 90 MHz) 7.6-7.2 (4 H, m, ArH), 4.95 (1 H, d, J7.2, PCH), 4.6-4.2 (2 H, m, CH,), 4.1-3.8 (4 H, m, CH, x 2) 和 1.3 (9 H, m, CH, x 3);Gp(CDCl,, 36 MHz) 10.6.乙基二乙氧基甲基(2-羟基苯1)次膦酸酯9a 将二异丙基酰胺锂(10 mmol)在干燥的四氢呋喃(10 cm3)溶液中,在-70“C氩气下滴加到化合物8a(2.9 g,10 mmol)的THF(20 cm3)溶液中。将反应混合物在-70“C下搅拌1小时,然后升温至室温。将反应混合物倒入饱和氯化铵水溶液(50cm3)中。有机相用水洗涤,干燥(MgSO,)并蒸发得到粗产物,其通过硅胶柱层析纯化,用轻质石油-乙醚(1:1)洗脱得到化合物9a(0.43g,15%),为无色固体,mp 110-111“C;v,,,(Nujol)/cm-' 3000 (OH)、1440 (ArP)、1200 (PO) 和 1040 (P-OAlk);G,(CDCl,, 90 MHz) 10.41 (1 H, br s, OH), 7.6-7.2(2H,m,ArH),7.l-6.8(2H7m,ArH),4.85(1H,d,J7.5, PCH),4.44.0(2H,m,CH2),4.O-3.8(4H,m,CH,x 2)和1.3 (9 H, m, CH, x 3);Gc(CDCl,, 22.5 MHz) 163.3 (d, Jc-2,p5.5 C-2),135.3(d, Jc-,,p2.7,C-4), 132.5(d,Jc_,,p6.9,C-6), 119.2(d, Jc-5,P 12.4, C-5), 117.8 (d, JC-3.p 8.2, C-3), 108.6 (d, Jc-1,p 119.4, C-1), 101.2 (d, Jc,p 160.6, PCH), 66.0-65.4 (dd, PCHOCH, x 2), 62.2 (d, Jc,p6.1, POCH,), 16.45 (d, Jc,p5.5, CH,) 和 15.1 (s, CH,) GP(CDC1,, 36 MHz) 37.9 (发现: C, 54.55;H, 7.5;P,10.95。C13H210,P 需要 C,54.15;H, 7.35;P,10.75)。二乙氧基甲基(2-氟-6-羟基苯基)次膦酸乙酯 9b 类似地,8b(6.1 g,20 mmol)得到粗产物,通过柱层析纯化,用轻质PET-roleum-二乙醚(1:1)洗脱,得到化合物9b(4.8g,78%)作为油;v,,,(Nujol)/cm-' 3 100 (OH)、1580、1450 (ArP)、1140 (PO)、1080 和 1040;&(CDCl,, 90 MHz) 11.2 (1 H, S, OH), 7.6-7.2 (1 H, m, ArH), 6.8-6.4 (2 H, m, ArH), 5.0 (1 H, dd, Jc,p 7.2 JC,F 2.0, PCH), 4.4-3.7 (6 H,m, CH, x 3) 和 1.3 (9 H, m, CH3 x 3);Gc(CDCl3, 22.5 MHz) 164.9 (d, Jc-6,~10.5, C-6), 163.2(d, Jc-2,,248.5,C-2), 136.1 (d, Jc-4,~ ll.O,C-4), 113.9(dd, JC-5,P 8.2, JC-5.F 2.7, C-5), 105.5 (dd, JC-3.p 6.9, Jc-3,F 23.3, C-3), 100.0(dd, Jc,p 166.1, JC,F4.1,PCH),98.0(dd7 Jc-1.p 114.0,Jc-1,F 23.3, C-1), 64.8 (dd, CH,), 62.6 (d, J8.2, CH,), 16.2 (d, J6.8, CH,) 和 15.0 (d, J 8.0, CH,);G,(CDCl,, 36 MHz) 37.4 (d, JP,F 3.9);GF(CDC1,, 84 MHz) -103.7 (实测值: C, 50.9;H, 6.9;P, 10.1.C,,H,,FO,P 需要 C, 51.0;H, 6.6;P,10.1)。Zchloro-6-hydroxyphenyl(二乙氧基甲基)次膦酸乙酯 9c 类似地,8c(6.4g,20mmol)得到粗产物,该粗产物通过柱层析纯化,用轻质PET-Roleum-二乙醚(1:1)洗脱,得到化合物9c(4.0g,63%)作为澄清油;v,,,(薄膜)/cm-' 3000 (OH)、1580、1440、1200、1060 和 780;G,(CDCl,, 90 MHz) 11.95 (1 H, s, OH), 7.6-6.7 (3 H,m,ArH),5.25(1H,d,J7.O,PCH),4.2-3.7(6H,m,CH2x 3)和1.3(9 H,m,CH,x 3);G,(CDCl,, 36 MHz) 39.7.2-溴-6-羟基苯基(二乙氧基甲基)次膦酸乙酯 9d 类似地,8d(7.3 g,20 mmol)得到粗产物,该粗产物通过柱层析在硅胶上用g,52%洗脱纯化为低熔点蜡状固体;v,,,(薄膜)/cm-' 3100 (OH)、1580、1440、1200 和 1050;GH(CDC1,, 90 MHz) 11.95 (I H, s, OH), 7.5-6.8 (3 H, m, ArH), 5.5 (1 H, d, J 10.0, PCH), 4.4- 3.5(6H,m,CH2 x 3),1.3(6H,2 x t,CH, x 2)andl.O(3H,t, J 7.0, CH,);Gp(CDCl,, 36 MHz) 40.1 (发现: C, 42.75;H, 5.4;P, 8.45.C1 ,H,,BrO,P 需要 C, 42.50;H, 5.50;P,8.45)。催化加氢还原9c 将9c(200mg,0.62mmol)和10%碳上钯(50mg)在无水乙醇(10cm3)中的混合物在40“C下加氢24小时。过滤和蒸发得到一种油,该油通过柱层析在硅胶上用轻质石油-乙醚(1:1)纯化,得到化合物9a(1 25 mg,70%),在所有方面都与先前获得的相同。将2-羟基苯基膦酸10a化合物9a(1.0g,3.5mmol)溶于无水乙醇(12.5cm3)和4mol dm-中,向溶液中加入盐酸。将混合物在100“C下加热3小时,然后蒸发得到与水(4×25em)和无水乙醇(4×25an3)共蒸发的油。所得油在储存时结晶,并用乙酸乙酯重结晶,得到化合物10a(0.49克,90%),为白针状;v,a,(Nujol)/cm-l 3100 (OH)、2410 (PH)、1600 和 1440;G,[(CD,),SO, 400 MHz] 7.53 (1 H, d, JpH 560.2, PH), 7.50 (1 H, ddd, J6p 9.2, J5.6 7.5, J4.6 1.7, 6-H), 7.40 (1 H, dt, J4,5 7.5, J4.6 1.7, 4-H), 6.92 (1 H, dt, J5,67.5, J2.0, 5-H) 和 6.87 (1 H, m, 3-H).6-氟-(2-羟基苯基)膦酸 10b 同样, 9b(1.0 g,3.3 mmol)得到一种产物,该产物由甲苯重结晶,得到化合物10b(520 mg,90%),为无色针状;vmaX(Nujol)/cm-' 3 100 (OH), 2420 (PH), 1590, 1440 和 1100 (CF);SH[(CD,),SO, 400 MHz] 7.73 (1 H,d, JpH591.0,PH),7.44(1 H,dt, J8.25,7.16,4-H),6.72(1 H, m, H-3) 和 6.69 (1 H, m, 5-H)。6-氯(2-羟基苯基)次膦酸 1Oc 类似地,9c(1.0 g,3.1 mmol)得到一种产物,该产物由甲苯-轻质石油(1:3)重结晶,得到化合物1Oc(300 mg,50%),为白色固体;v,,,(Nujol)/cm-' 3000 (OH)、2400 (PH)、1600、1400 和 780 (CCl);6,-[(CD,),SO, 400 MHz] 10.4 (1 H, br s, OH), 7.78 (1 H, d, JpH 597.1, PH), 7.42(1 H, t, J8.2, 4-H), 6.96 (1 H, dd, J8.35,4.05, 5-H) 和 6.84 (1 H, dd, J 7.85,4.55, 3-H).6-溴-(2-羟基苯基)膦酸 1Od 类似地,9d (2.0 g, 5.5 mmol),得到由甲苯-轻石油重结晶的产物 (3 : 1) 得到化合物 10d (l'.O g, 77%)为白色固体;v,,,(Nujol)/cm-l 3200 (OH)、2420 (PH)、1590 和 1440;dH[(CD,),SO, 400 MHz] 8.0 (1 H, br s, OH), 7.69 (1 H, d, JpH 597.8, PH), 7.33 (1 H, t, J8.15, 4-H), 7.13 (1 H, ddd, J7.85, 4.5, 0.6, 5-H) 和 6.86 (1 H, dd, J8.35,4.0, 3-H)。将二乙氧基甲基(2-萘1)膦酸乙酯11,2-萘酚(14.4g,0.1mol)和1(19.6g,0.1mol)在室温下溶解在干燥THF-CCl(1:5)(100cm3)的混合物中。将干燥的三乙胺(10.0g,0.1mol)滴加到混合物中,通过冰浴将其内部温度保持在<30“C。然后将混合物在室温下搅拌4小时,过滤滤液,滤液用冷的1 mol dm-3盐酸、1 mol dm-、氢氧化钠水溶液和水洗涤并干燥(MgSO,)。蒸发后在擦壁蒸馏装置上以 140 “C/O 进行蒸馏。 1 mmHg 得到化合物 11(26.4 g,78%)为清澈油;v,,,(薄膜)/cm-' 1600/1510 (Ar), J. CHEM. SOC. PERKIN TRANS. 1 1995 1280 (PO), 1210and 1060;S,(CDCl3,90 MHz)7.9-7.7(4 H,m,Ar),7.6-7.3(3 H,m,Ar),4.95(1 H,d,J7.2,PCH),4.5-4.2(2 H,m,CH),4.1-3.6(4 H,m,CH,x 2)和1.25(9 H,m,CH,x 3);Gp(CDC1,, 36 MHz) 10.8.在氩气下,将LDA诱导的11 A二异丙基酰胺锂(10 mmol)在干四氢呋喃(THF)(10 cm3)溶液中滴加到化合物11(3.4 g,10 mmol)的THF(40 cm3)溶液中,在-70“C下。将反应混合物在-70“C下搅拌1小时,然后在室温下搅拌1小时。将反应混合物倒入饱和氯化铵水溶液(50 cm3)中,并用乙酸乙酯萃取。将有机提取物干燥(MgS04)并蒸发,得到油状的粗产物。用轻质石油-二乙醚(3:1)洗脱硅胶,通过柱层析纯化,得到二乙氧基甲基(2-羟基-1-萘基)膦酸乙酯13(0.3g,9%)作为油;GH(CDCl,, 90 MHz) 13.1 (1 H, s, OH), 8.4-7.5 (6 H, m, Ar), 5.5 (1 H, d, J 10.8,PCH), 4.8-3.6 (6 H, m, CH, x 3) 和 1.3 (9 H, m, CH, x 3);Gc(CDC13,22.5 MHz)(季碳)169.5(d,Jc-2,p4.3,C-2),137.3(d,Jc-8,p9.5,C-8),132.0(d,Jc-4,p11.0,C-4)和102.5(d,Jc-l,p 117.0,C-1);Gp(CDCI,, 36 MHz) 42.6.另外得到的是二乙氧基甲基(2-羟基-3-萘基)次膦酸乙酯12 (0.6 g, 18%),为白色固体,熔点108-1 12“C;G,(CDCl,, 90 MHz) 10.7 参考文献 1 E. K. Baylis, C. D. Campbell and J. G. Dingwall, J. Chem. Soc., Perkin Trans., 1, 1984,2845.2 E. P. 0181833 (Ciba-Geigy PLC) CA: 106 P18814k. 3 M. C. Allen, W.Fuhrer, B. Tuck, R. Wade and J. M. Wood, J. Med. Chem., 1989,32, 1652.4 A. C. Baillie, C. L. Cornell, B. J. Wright and K. Wright, Tetrahedron Lett., 1992,33, 5133.5 E. P. 0307362 (Ciba-Geigy PLC) CA: I1 1 P78366d. 6 M. J. Gallagher 和 H. Honegger, Aust. J. Chem., 1980,33,287.7 J. G. Dingwall, J. Ehrenfreund and R. G. Hall, 四面体, 1989, 45, 3787.8 A. W. Frank, Chem. Rev., 1961,61, 389.9 T. Hirao、J. Masunaga、Y. Ohshiro 和 T.阿加瓦,综合,1981,56。10 Y. Xu and J. Zhang, Synthesis, 1983, 377.11 徐彦、钟立、嘉志、慧菊、瑶增,综合,1984,781。12 L. S. Melvin, Tetrahedron Lett., 1981,22, 3375.13 R. C. Cambie 和 B. D. Palmer, Aust. J. Chem., 1982,35827.14 B. Dhawan 和 D. Redmore,J. Org. Chem.,1984,49,4018;合成器。公社, 1985, 15, 41 1;磷硫和硅, 1989,42, 177.15 D.A.Caste1和S.P.Peri,《综合》,1991,691。16 S.马森,J.-F.Saint-Clair 和 M. Saquet,综合,1993,485。17 K. Diemert、W. Kuchen、P. Staniek 和 H. Wunderlich,海报摘要,磷化学国际会议论文集,德国波恩,1986 年,磷和硫,3.8 (6 H, m, CH, x 3) 和 1.3 (9 H, m, CH, x 3);Gc(CDC13, 22.5 MHz) (四元c) 158.2 (d, Jc-z,p5.5, C-2), 138.4 (d, Jc-8.p2.0, C-8), 127.9 (d, Jc-4.p13.0, C-4) 和 113.0 (d, Jc-3,p 1 16.7, C-3);Gp(CDCI3, 36 MHz) 36.3.致谢 这项工作在一定程度上是为曼彻斯特理工学院(曼彻斯特城市大学)的研究生研究文凭而提出的。s.N. L. Bennett 感谢 G. V. Garner 博士的鼓励和支持。1987,820.(lH,s,OH),8.4-7.8(6H,m,Ar),5.2(1H,d,J7.9,PCH),4.8-18 K. Diemert,个人通信。19 B. Dwahan 和 D. Redmore,J. Org. Chem.,1991,56,833。20 V. M. Plets, J. Gen. Chem. USSR (Engl. Transl.), 1937, 7, 84.21 R. Michaelis 和 A. Schenk,Liebigs Ann. Chem.,1890,260。22 T. Weil, B. Prifs 和 H. Erlenmeyer, Helv.来吧。学报, 1953, 36, 1314.23 I. M. Klotz 和 R. T. Morrison, J. Am. Chem. Soc., 1947,69,473.论文 4/06777K 收稿日期 1994年11月7日 录用日期 1995年1月4日

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号