...
首页> 外文期刊>Journal of Geophysical Research, D. Atmospheres: JGR >An Application of the Maximum Entropy Production Method in the WRF Noah Land Surface Model
【24h】

An Application of the Maximum Entropy Production Method in the WRF Noah Land Surface Model

机译:An Application of the Maximum Entropy Production Method in the WRF Noah Land Surface Model

获取原文
获取原文并翻译 | 示例
           

摘要

The calculation of surface sensible heat (SH) and latent heat (LE) fluxes using the bulk transfer models for complex terrains, tall vegetation regions, and morning and evening transition periods remains a challenging problem in numerical weather and climate models. The maximum entropy production (MEP) model, a new method of calculating surface heat fluxes, is coupled with the Noah land surface model (LSM) in the Weather Research and Forecasting (WRF) model. Surface heat fluxes and meteorological variables including air temperature, relative humidity, soil temperature, and precipitation data at nine intensive observation stations and 453 routine meteorological operational observation stations in the Tibetan Plateau (TP) from 1 June to 31 August 2015 are used to evaluate the coupled model. The results show that the MEP method improves the nonclosure of the surface energy balance in the WRF (with an energy residual from 24.3 to 1.9 W m(-2)), reducing the overestimations of SH and LE and the underestimation of the surface ground heat flux over the complex terrain of TP (with the bias decreases of 50.6% and 117.1% for SH and LE in turn), especially during the daytime. The improved SH and LE reduce the cold and wet biases in the TP by 29.4% and 51.7%, respectively. The MEP model also reduces the overestimated soil temperature by 63%. Moreover, the overestimated daily precipitation is reduced by 3% over the TP. The successful application of the MEP method demonstrates its advantage over the bulk transfer method, providing a new approach for reducing the overestimation of surface heat fluxes and wet and cold biases in numerical forecast models in complex terrains.
机译:计算表面显热(SH)和潜热通量(LE)使用批量转移模型对于复杂的地形,高大的植被地区,早晚过渡时间仍然是一个具有挑战性的问题数值天气和气候模型。熵产生(MEP)模型,一种新方法计算表面热通量,加上诺亚地表模型(LSM)天气研究和预测(WRF)模型。热通量和气象变量包括空气温度,相对湿度,土壤温度和降水数据在9密集的观察台和453例程气象观察操作站在青藏高原(TP)从6月1日到31日2015年8月被用来评估耦合模型。提高了nonclosure表面的能量平衡在WRF(能源剩余24.3到1.9 W m(2)),减少了过高的SH和勒低估的表面地面热通量在复杂地形的TP(偏见减少50.6%和117.1% SH和勒转),特别是在白天。改进的SH和LE减少寒冷和潮湿的偏见TP的29.4%和51.7%,分别。议员模型还减少了高估了土壤温度下降了63%。每天在高原地区降水减少3%。议员方法的成功应用演示了批量转移它的优势方法,为减少提供一种新方法过高的表面热通量和湿寒冷的偏见在数值预报模型复杂的地形。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号