...
首页> 外文期刊>Journal of Geophysical Research, D. Atmospheres: JGR >A Modeling Study on the Responses of the Mesosphere and Lower Thermosphere (MLT) Temperature to the Initial and Main Phases of Geomagnetic Storms at High Latitudes
【24h】

A Modeling Study on the Responses of the Mesosphere and Lower Thermosphere (MLT) Temperature to the Initial and Main Phases of Geomagnetic Storms at High Latitudes

机译:A Modeling Study on the Responses of the Mesosphere and Lower Thermosphere (MLT) Temperature to the Initial and Main Phases of Geomagnetic Storms at High Latitudes

获取原文
获取原文并翻译 | 示例
           

摘要

Abstract Joule heating and radiative cooling usually play key roles in high‐latitude thermospheric temperature changes during geomagnetic storms. In the mesosphere and lower thermosphere (MLT), however, the causes of storm‐time temperature changes at high latitudes are still elusive. Here, we elucidate the nature and mechanisms of MLT temperature variations at high latitudes during the 10 September 2005 storm by diagnostically analyzing the MLT thermodynamics in the Thermosphere Ionosphere Mesosphere Electrodynamics General Circulation Model (TIMEGCM) simulations. In the storm's initial and main phases, the MLT temperature decreases at 0:00 local time (LT)−12:00 LT, but increases in the 12:00 LT–24:00 LT sector at high latitudes. Afterward, the temperature decrease disappears and temperature increase occurs at all local times in the high latitudes. Adiabatic heating/cooling and vertical advection associated with vertical winds are the main drivers of high‐latitude temperature changes in the entire altitude range of the MLT region. However, around the auroral oval and above ∼100 km, the Joule heating rate is comparable to the heating caused by vertical advection and adiabatic heating/cooling associated with vertical winds and becomes one of the major contributors to total heating in the high‐latitude MLT region. The effects of Joule heating can penetrate down to ∼95 km. Horizontal advection also plays a key role in storm‐time MLT temperature changes inside the polar cap and becomes larger than the adiabatic heating/cooling above ∼105 km.
机译:抽象的焦耳加热和辐射冷却通常在高纬度上发挥了关键作用thermospheric温度变化时地磁风暴。然而,热电离层(MLT)的原因风暴时间高纬度地区温度变化仍然是难以捉摸的。MLT温度变化的机制高纬度地区在2005年9月10日风暴通过诊断分析传输热力学的热大气层电离层中间层电动力学环流模型(TIMEGCM)模拟。初始和主要阶段,MLT的温度减少在当地时间0:00−12:00肝移植(LT),但是增加12点LT-24:00 LT部门高纬度。消失了,温度升高发生当地时间在高纬度地区。加热/冷却和垂直平流相关联与垂直风的主要动力高纬度在整个温度变化MLT地区的海拔范围。极光椭圆和∼100公里以上,焦耳加热速度与加热引起的通过垂直平流和绝热加热/冷却与垂直风并成为一个主要的贡献者总高MLT纬度地区供暖。焦耳加热可以穿透的影响∼95公里。风暴作用时间MLT内部温度变化极地冰冠,变得比绝热加热/冷却∼105公里以上。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号