首页> 外文期刊>ChemPhotoChem >Recent Advances in the Design of Multi‐Substituted Carbazoles for Optoelectronics: Synthesis and Structure‐Property Outlook
【24h】

Recent Advances in the Design of Multi‐Substituted Carbazoles for Optoelectronics: Synthesis and Structure‐Property Outlook

机译:光电子学用多取代咔唑类化合物的设计研究进展:合成与构效展望

获取原文
获取原文并翻译 | 示例
           

摘要

Abstract Organic synthesis plays a pivotal role in the development of innovative organic functional materials for optoelectronic applications such as organic light emitting diodes (OLEDs), photovoltaics (OPVs), non‐linear optics (NLOs), field effect transistors (OFETs) and sensors. Chemical functionalization methods available for polyaromatic hydrocarbons (PAHs) are particularly attractive as they provide opportunities to fine‐tune the physicochemical, charge transporting and device parameters. Among the PAHs containing heteroatoms, carbazole is recognized as one of the most promising building blocks for assembling the functional materials for organic electronics, particularly for OLED and OPVs due to its unique features such as good hole transporting ability, excellent thermal and morphological stability, amorphous nature, low cost, high triplet energy and flexibility for functionalization. Until 2011, carbazole‐based functional materials were limited to use as a donor in donor–acceptor molecular configurations and as difunctionalized (C3,C6‐ or C2,C7‐ or N‐) derivatives capable of hole transporting/emitting characteristics. Recently, polyfunctionalization on carbazole at various positions has drawn significant attention as a result of their promising structure–function relationships. Although some reviews have focused on structure–property relationships within difunctionalized carbazoles, recent synthetic advances in the field of polyfunctionalized carbazoles and their resultant structure–property relationships remain unreviewed. To bridge this gap, in this article we review newly emerged synthetic approaches for polyfunctionalization of carbazole and discuss the effects of substitution pattern, chromophore nature and its density on the photophysical and device properties.
机译:摘要在有机合成中扮演着关键的角色创新的有机功能的发展材料等光电应用程序有机发光二极管(oled),场效应晶体管(ofet)和传感器。用于化学功能化方法聚芳碳氢化合物(多环芳烃)尤其有吸引力的,因为他们提供的机会细量优化物理化学,电荷运输和设备参数。多环芳烃含杂原子,咔唑被认为是最有前途的一个建筑块组装的功能材料有机电子器件,特别是对OLED并且由于其独特的特性,比如良好的口服脊髓灰质炎疫苗孔的运输能力,优秀的热自然形态稳定、无定形、低成本、高三重态能量和灵活性功能化。作为功能材料是有限的捐赠者在亲水分子构型正如difunctionalized (C3、C6量或C2, C7量或者N)衍生品运输/发射能力的洞特征。在咔唑在不同的位置了他们的重要关注结果有前途的结构关系。尽管一些评论都集中在内部组织性能的关系最近difunctionalized咔唑,合成polyfunctionalized领域的进步咔唑及其合成组织性能关系仍未审核。新出现的缺口,在本文中,我们审查polyfunctionalization的合成方法咔唑和讨论替代的影响模式,发色团性质和它的密度光物理和设备属性。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号