...
首页> 外文期刊>Advances in Manufacturing >Precision measurement and compensation of kinematic errors for industrial robots using artifact and machine learning
【24h】

Precision measurement and compensation of kinematic errors for industrial robots using artifact and machine learning

机译:使用伪影和机器学习对工业机器人的运动学误差进行精确测量和补偿

获取原文
获取原文并翻译 | 示例

摘要

Industrial robots are widely used in various areas owing to their greater degrees of freedom (DOFs) and larger operation space compared with traditional frame movement systems involving sliding and rotational stages. However, the geometrical transfer of joint kinematic errors and the relatively weak rigidity of industrial robots compared with frame movement systems decrease their absolute kinematic accuracy, thereby limiting their further application in ultra-precision manufacturing. This imposes a stringent requirement for improving the absolute kinematic accuracy of industrial robots in terms of the position and orientation of the robot arm end. Current measurement and compensation methods for industrial robots either require expensive measuring systems, producing positioning or orientation errors, or offer low measurement accuracy. Herein, a kinematic calibration method for an industrial robot using an artifact with a hybrid spherical and ellipsoid surface is proposed. A system with submicrometric precision for measuring the position and orientation of the robot arm end is developed using laser displacement sensors. Subsequently, a novel kinematic error compensating method involving both a residual learning algorithm and a neural network is proposed to compensate for nonlinear errors. A six-layer recurrent neural network (RNN) is designed to compensate for the kinematic nonlinear errors of a six-DOF industrial robot. The results validate the feasibility of the proposed method for measuring the kinematic errors of industrial robots, and the compensation method based on the RNN improves the accuracy via parameter fitting. Experimental studies show that the measuring system and compensation method can reduce motion errors by more than 30%. The present study provides a feasible and economic approach for measuring and improving the motion accuracy of an industrial robot at the submicrometric measurement level.
机译:工业机器人在各个领域广泛应用因为他们更大的自由度(自由度)相比之下,和更大的操作空间传统的帧运动系统涉及滑动和旋转阶段。几何的关节运动的错误和工业的刚度相对较弱机器人与帧运动系统减少他们的绝对运动的准确性,从而限制了其进一步的应用超精密制造。严格要求提高绝对的工业机器人的运动精度机器人的位置和姿态的胳膊结束。需要昂贵的工业机器人测量系统,产生定位或方向错误,或提供较低的测量准确性。对于一个工业机器人使用一个工件混合球面和椭球面建议。测量的位置和姿态使用激光机器人手臂结束了位移传感器。涉及运动误差补偿方法剩余的学习算法和神经网络提出了非线性补偿错误。(RNN)旨在弥补运动six-DOF工业机器人的非线性误差。结果验证的可行性提出了测量运动方法工业机器人的错误和补偿方法基于RNN可通过准确性参数拟合。测量系统和补偿方法运动误差减少30%以上。本研究提供了一个可行的和经济方法测量和改善运动一个工业机器人的准确性submicrometric测量水平。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号