...
首页> 外文期刊>Journal of Geophysical Research, A. Space Physics: JGR >Lunar Prospector observations of the electrostatic potential of the lunar surface and its response to incident currents
【24h】

Lunar Prospector observations of the electrostatic potential of the lunar surface and its response to incident currents

机译:月球探勘者观察的静电月球表面的潜力及其响应对事件流

获取原文
获取原文并翻译 | 示例
           

摘要

We present an analysis of Lunar Prospector Electron Reflectometer data from selected time periods using newly developed methods to correct for spacecraft potential and self-consistently utilizing the entire measured electron distribution to remotely sense the lunar surface electrostatic potential with respect to the ambient plasma. These new techniques enable the first quantitative measurements of lunar surface potentials from orbit. Knowledge of the spacecraft potential also allows accurate characterization of the downward-going electron fluxes that contribute to lunar surface charging, allowing us to determine how the lunar surface potential reacts to changing ambient plasma conditions. On the lunar night side, in shadow, we observe lunar surface potentials of ~?100 V in the terrestrial magnetotail lobes and potentials of ~?200 V to ~?1 kV in the plasma sheet. In the lunar wake, we find potentials of ~?200 V near the edges but smaller potentials in the central wake, where electron temperatures increase and secondary emission may reduce the magnitude of the negative surface potential. During solar energetic particle events, we see nightside lunar surface potentials as large as ~?4 kV. On the other hand, on the lunar day side, in sunlight, we generally find potentials smaller than our measurement threshold of ~20 V, except in the plasma sheet, where we still observe negative potentials of several hundred volts at times, even in sunlight. The presence of significant negative charging in sunlight at these times, given the measured incident electron currents, implies either photocurrents from lunar regolith in situ two orders of magnitude lower than those measured in the laboratory or nonmonotonic near-surface potential variation with altitude. The functional dependence of the lunar surface potential on electron temperature in shadow implies somewhat smaller secondary emission yields from lunar regolith in situ than previously measured in the laboratory. These new techniques open the door for future studies of the variation of lunar surface charging as a function of temporal and spatial variations in input currents and as a function of location and material characteristics of the surface as well as comparisons to the increasingly sophisticated theoretical predictions now available.
机译:我们提出的分析月球探勘者电子反射计的数据选择的时间使用新开发的方法来纠正对航天器的潜力和自我一贯地利用整个测量电子远程分发给月球表面静电势的周围等离子体。月球表面的第一个定量测量势从轨道。航天器可能还允许准确downward-going电子的特性通量,导致月球表面充电,让我们来确定月球表面潜在的反应改变周围等离子体条件。我们观察月球表面势的~ ?地球磁尾叶和潜力的~ ?月球之后,我们发现潜力~ ?但小势在中央之后,电子温度增加和二次发射可能减少的大小负表面潜力。高能粒子事件,我们看到阴面月球表面势一样大~ ?另一方面,月球的一天,在阳光下,我们通常发现潜力比我们的小测量阈值~ 20 V,除了等离子体单,我们还观察到负的势几百伏,即使在阳光。-在这些时间在阳光下充电,考虑到测量入射电子电流,从月球风化层意味着要么光电流原位比低两个数量级测量在实验室或非单调近地表电位变化与高度。月球表面的功能依赖潜在的对电子温度的影子意味着有些较小的二次发射收益率从月球风化层原位以前在实验室测量。为未来的研究技术打开门月球表面的变化作为一个收费时间和空间变化的函数输入电流和位置的函数材料表面的特征与日益复杂的比较理论预测。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号