...
首页> 外文期刊>Aquaculture >Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia-nitrogen in aquaculture systems.
【24h】

Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia-nitrogen in aquaculture systems.

机译:水产养殖系统中光自养,自养和异养去除氨氮的化学计量的工程分析。

获取原文
获取原文并翻译 | 示例
           

摘要

In intensive aquaculture systems, ammonia-nitrogen buildup from the metabolism of feed is usually the second limiting factor to increase production levels after dissolved oxygen. The three nitrogen conversion pathways traditionally used for the removal of ammonia-nitrogen in aquaculture systems are photoautotrophic removal by algae, autotrophic bacterial conversion of ammonia-nitrogen to nitrate-nitrogen, and heterotrophic bacterial conversion of ammonia-nitrogen directly to microbial biomass. Traditionally, pond aquaculture has used photoautotrophic algae based systems to control inorganic nitrogen buildup. Currently, the primary strategy in intensive recirculating production systems for controlling ammonia-nitrogen is using large fixed-cell bioreactors. This option utilizes chemosynthetic autotrophic bacteria, Ammonia Oxidizing Bacteria (AOB) and Nitrite Oxidizing Bacteria (NOB), for the nitrification of ammonia-nitrogen to nitrite-nitrogen and finally to nitrate-nitrogen. In the past several years, zero-exchange management systems have been developed that are based on heterotrophic bacteria and have been promoted for the intensive production of marine shrimp. In this third pathway, heterotrophic bacterial growth is stimulated through the addition of organic carbonaceous substrate. At high carbon to nitrogen (C/N) feed ratios, heterotrophic bacteria will assimilate ammonia-nitrogen directly into cellular protein. This paper reviews these three ammonia removal pathways, develops a set of stoichiometric balanced relationships using half-reaction relationships, and discusses their impact on water quality. In addition, microbial growth fundamentals are used to characterize production of volatile and total suspended solids for autotrophic and heterotrophic systems..
机译:在集约化养殖系统中,饲料中新陈代谢产生的氨氮通常是增加溶解氧后产量的第二个限制因素。传统上在水产养殖系统中用于去除氨氮的三种氮转化途径是藻类的光合自养去除,氨氮自养细菌转化为硝酸盐氮以及氨氮直接通过异养细菌转化为微生物生物质。传统上,池塘水产养殖业使用基于光合自养藻类的系统来控制无机氮的积累。当前,用于控制氨氮的强化循环生产系统的主要策略是使用大型固定池生物反应器。此选项利用化学合成自养细菌氨氧化细菌(AOB)和亚硝酸盐氧化细菌(NOB)将氨氮硝化为亚硝酸盐氮,最后硝化为硝酸盐氮。在过去的几年中,已经开发了基于异养细菌的零交换管理系统,并已被推广用于海虾的集约化生产。在该第三途径中,通过添加有机碳质底物来刺激异养细菌的生长。在高碳氮比下,异养细菌会将氨氮直接吸收到细胞蛋白中。本文回顾了这三个脱氨途径,利用半反应关系建立了一组化学计量平衡关系,并讨论了它们对水质的影响。此外,微生物生长的基本原理用于表征自养和异养系统的挥发性和总悬浮固体的产生。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号