首页> 外文期刊>Acta crystallographica. Section D, Structural biology. >Re‐evaluation of low‐resolution crystal structures via via interactive molecular‐dynamics flexible fitting (iMDFF): a case study in complement C4
【24h】

Re‐evaluation of low‐resolution crystal structures via via interactive molecular‐dynamics flexible fitting (iMDFF): a case study in complement C4

机译:重新评估等低分辨率晶体结构通过互动通过分子动力学灵活配件(iMDFF):一个案例研究在补体C4

获取原文
获取原文并翻译 | 示例
       

摘要

While the rapid proliferation of high‐resolution structures in the Protein Data Bank provides a rich set of templates for starting models, it remains the case that a great many structures both past and present are built at least in part by hand‐threading through low‐resolution and/or weak electron density. With current model‐building tools this task can be challenging, and the de facto standard for acceptable error rates (in the form of atomic clashes and unfavourable backbone and side‐chain conformations) in structures based on data with d max not exceeding 3.5?? reflects this. When combined with other factors such as model bias, these residual errors can conspire to make more serious errors in the protein fold difficult or impossible to detect. The three recently published 3.6–4.2?? resolution structures of complement C4 (PDB entries 4fxg , 4fxk and 4xam ) rank in the top quartile of structures of comparable resolution both in terms of R free and MolProbity score, yet, as shown here, contain register errors in six β‐strands. By applying a molecular‐dynamics force field that explicitly models interatomic forces and hence excludes most physically impossible conformations, the recently developed interactive molecular‐dynamics flexible fitting (iMDFF) approach significantly reduces the complexity of the conformational space to be searched during manual rebuilding. This substantially improves the rate of detection and correction of register errors, and allows user‐guided model building in maps with a resolution lower than 3.5?? to converge to solutions with a stereochemical quality comparable to atomic resolution structures. Here, iMDFF has been used to individually correct and re‐refine these three structures to MolProbity scores of 1.7, and strategies for working with such challenging data sets are suggested. Notably, the improved model allowed the resolution for complement C4b to be extended from 4.2 to 3.5?? as demonstrated by paired refinement.
机译:而高分辨率的快速扩散提供了一个结构在蛋白质数据银行丰富的模板模型开始,它仍然,许多结构过去和现在都是至少部分手工量通过低分辨率和/或应承担的线程弱的电子密度。模型检测工具建造这个任务具有挑战性和事实上的标准可接受的错误率(原子的形式冲突和不利的骨干和侧链基于数据与d构象)结构最大不超过3.5 ? ?结合其他因素,如模型偏差,这些残余错误合起来可以赚到更多的钱在蛋白质折叠困难或严重的错误无法检测。发布3.6 - -4.2 ? ?补体C4 (PDB项4 fxg 4 fxk和4 xam)排名前四分之一的结构类似的决议的自由和RMolProbity得分,然而,如下所示,包含登记错误6β链。分子动力学力场,明确模型中原子间力,因此排除了大部分最近身体不可能构象,开发交互式分子动力学灵活配件(iMDFF)方法可以显著减少构象空间的复杂性搜索在手动重建。大大提高了检测的速度和更正登记错误,并允许用户应承担的指导模型建立在地图分辨率低于3.5 ? ?解决方案与一个立体化学的质量与原子分辨率结构。iMDFF已经被用于单独正确重新完善这三个结构,MolProbity& 1.7的分数,和工作策略这样的挑战提出了数据集。值得注意的是,改进的模型允许分辨率为补充C4b扩展4.2到3.5 ? ?细化。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号