首页> 外文期刊>Acta crystallographica. Section D, Structural biology. >Deriving and refining atomic models in crystallography and cryo-EM: the latest Phenix tools to facilitate structure analysis
【24h】

Deriving and refining atomic models in crystallography and cryo-EM: the latest Phenix tools to facilitate structure analysis

机译:原子模型推导和精炼晶体学和低温电子显微镜:最新的绝代佳人促进结构分析的工具

获取原文
获取原文并翻译 | 示例
           

摘要

Over the last few years, the technical breakthrough of single-particle cryo electron microscopy (cryo-EM) thanks to the recent developments of direct electron detectors and advanced image processing software (for reviews see, for example, Orlova & Saibil, 2011; Stark & Chari, 2016; Orlov et al, 2017; Kim et al, 2018; Ognjenovic et al, 2019), has in many cases allowed the 3 A resolution range to be reached (Fig. 1). In X-ray crystallography, this resolution range is generally considered to be required for deriving atomic models with properly defined geometrical properties, such as the peptide backbone and side-chain geometry of amino acids and nucleotides in macromolecular complexes. The reason why deriving reliable atomic models is so important is that it provides the basis for the detailed analysis of the three-dimensional structures of interest, such as nucleoprotein complexes in the cell nucleus, membrane proteins or viruses and various drug targets. An atomic model containing flaws because of incorrect or insufficient refinement may lead to incorrect conclusions on the detailed interpretation of the structure, with direct implications on the analysis of interactions between residues. For example, the accurate description of hydrogen bonds (which relies both on proper distances and angular orientations of the acceptor and donor, e.g. Klaholz & Moras, 2002; Coulocheri et al., 2007) are directly relevant for the analysis of molecular recognition or catalysis events, specificity of drug interactions, effects of point mutants etc., and the precise depiction of base-pairing and stacking interactions between nucleotide bases is essential for the analysis of RNA and DNA complexes (Leontis & Westhof, 2001).
机译:在过去的几年里,技术突破单粒子的低温电子显微镜(低温电子显微镜)由于最近直接电子探测器和发展先进的图像处理软件(评论例如,奥尔& Saibil, 2011;沙里河,2016;Ognjenovic等,2019),在许多情况下允许3分辨率范围(图1)。在x射线晶体学,这个分辨率范围通常被认为是需要正确地推导原子模型定义的几何属性,如肽链和氨基酸侧链的几何形状在大分子酸和核苷酸复合物。非常重要的是,它提供了原子模型的详细分析的基础三维结构感兴趣的,比如在细胞核核蛋白质复合物,膜蛋白或病毒和各种药物目标。不正确的或精致不足可能导致详细的错误结论结构的解释,直接在分析交互的影响之间的残留。描述氢键(依赖在适当的距离和角度的方向受体和捐赠者,例如Klaholz &莫拉2002;相关的分子分析识别或催化事件,特异性的药物的相互作用、点突变体等的影响。和碱基配对的精确描述叠加核苷酸碱基之间的相互作用必不可少的RNA和DNA的分析配合物(Leontis & Westhof, 2001)。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号