首页> 外文期刊>Nanoscale >Ultralow friction of ink-jet printed graphene flakes
【24h】

Ultralow friction of ink-jet printed graphene flakes

机译:超低摩擦的喷墨印刷石墨烯片

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

We report the frictional response of few-layer graphene (FLG) flakes obtained by the liquid phase exfoliation (LPE) of pristine graphite. To this end, we inkjet print FLG on bare and hexamethyldisilazane-terminated SiO2 substrates, producing micrometric patterns with nanoscopic roughness that are investigated by atomic force microscopy. Normal force spectroscopy and atomically-resolved morphologies indicate reduced surface contamination by solvents after a vacuum annealing process. Notably, the printed FLG flakes show ultralow friction comparable to that of micromechanically exfoliated graphene flakes. Lubricity is retained on flakes with a lateral size of a few tens of nanometres, and with a thickness as small as similar to 2 nm, confirming the high crystalline quality and low defects density in the FLG basal plane. Surface exposed step edges exhibit the highest friction values, representing the preferential sites for the origin of the secondary dissipative processes related to edge straining, wear or lateral displacement of the flakes. Our work demonstrates that LPE enables fundamental studies on graphene friction to the single-flake level. The capability to deliver ultralow-friction-graphene over technologically relevant substrates, using a scalable production route and a high-throughput, large-area printing technique, may also open up new opportunities in the lubrication of micro-and nano-electromechanical systems.
机译:我们报告few-layer的摩擦反应石墨烯(FLG)片获得的液体相剥落(简述)的原始石墨。这个目的,我们FLG裸露和喷墨打印hexamethyldisilazane-terminated二氧化矽基板,生产与纳米测微的模式研究了原子力粗糙度显微镜。atomically-resolved形态表明减少表面污染的溶剂在真空中退火过程。片显示超低摩擦可比微机械剥离的石墨烯片。润滑是保留在侧片几十纳米大小,和一个厚度小,类似于2 nm,确认晶体质量高和低的缺陷FLG底面密度。步骤边缘表现出最高的摩擦值,代表的优惠网站二级起源耗散过程边紧张有关,磨损或侧片的位移。简述支持基本研究石墨烯摩擦single-flake水平。能力提供ultralow-friction-graphene在技术相关的基板,使用可伸缩的生产路线和高通量,大面积印刷技术,也可以打开在微观和润滑的新机会nano-electromechanical系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号