...
首页> 外文期刊>Nanoscale >Gold nanorod@iron oxide core-shell heterostructures: synthesis, characterization, and photocatalytic performance
【24h】

Gold nanorod@iron oxide core-shell heterostructures: synthesis, characterization, and photocatalytic performance

机译:黄金nanorod@iron氧化物核壳异质结构:合成、表征、及光催化性能

获取原文
获取原文并翻译 | 示例

摘要

Iron oxides are directly coated on the surface of cetyl-trimethylammonium bromide (CTAB)-capped gold nanorods (AuNRs) in aqueous solutions at room temperature, which results in AuNR@Fe2O3, AuNR@Fe3O4, and AuNR@Fe2O3@Fe3O4 core-shell heterostructures. The iron oxide shells are uniform, smooth, with characteristic porous structure, and their thickness can be readily tuned. The shell formation is highly dependent on the reaction parameters including pH and CTAB concentration. The Fe2O3 shell is amorphous and exhibits nearly zero remanence and coercivity, while the Fe3O4 shell is ferromagnetic with a low saturation magnetization of about 0.5 emu g(-1) due to its low crystallinity and the porous structure. At elevated temperatures achieved by plasmonic heating of the Au core, the Fe2O3 shell transforms from amorphous to gamma-Fe2O3 and alpha-Fe2O3 phases, while the Fe3O4 phase disappears because of the oxidation of Fe2+. A 1.4-fold increase of photocatalytic performance is observed due to the plasmonic resonance provided by the Au core. The photocatalytic efficiency of Fe3O4 is about 1.7-fold higher than Fe2O3 as more surface defects are present on the Fe3O4 shell, promoting the adsorption and activation of reagents on the surface during the catalytic reactions. This approach can be readily extended to other nanostructures including Au spherical nanoparticles and nanostars. These highly uniform and multifunctional core-shell heterostructures can be of great potential in a variety of energy, magnetic, and environment applications.
机译:铁氧化物直接表面的涂层cetyl-trimethylammonium溴铵(CTAB)顶部覆金纳米棒(AuNRs)在水溶液导致AuNR@Fe2O3室温,AuNR@Fe3O4, AuNR@Fe2O3@Fe3O4核壳异质结构。均匀,光滑,多孔特征结构,厚度很容易调优。包括pH值和CTAB反应参数浓度。剩磁和矫顽力等展品几乎为零,虽然Fe3O4壳是铁磁低饱和磁化强度约为0.5 emu g (1)由于其较低的结晶度和多孔结构。电浆加热非盟的核心,Fe2O3壳从非晶态gamma-Fe2O3和转换alpha-Fe2O3阶段,而Fe3O4阶段消失的氧化价。增长了1.4倍的光催化性能由于观察到电浆共振非盟的核心。Fe3O4效率高出1.7倍Fe2O3更多表面缺陷存在Fe3O4壳牌、吸附和促进激活的试剂表面上催化反应。扩展到其他纳米结构包括非盟球形纳米粒子和nanostars。高度统一和多功能核壳异质结构的巨大潜力各种各样的能源、磁性、和环境应用程序。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号