...
首页> 外文期刊>Nanoscale >Constructing epitaxially grown heterointerface of metal nanoparticles and manganese dioxide anode for high-capacity and high-rate lithium-ion batteries
【24h】

Constructing epitaxially grown heterointerface of metal nanoparticles and manganese dioxide anode for high-capacity and high-rate lithium-ion batteries

机译:构建外延生长异质结面金属纳米粒子和二氧化锰阳极高容量和高效的锂离子电池

获取原文
获取原文并翻译 | 示例

摘要

Low ion migration rate and irreversible change in the valence state in transition-metal oxides limit their application as anode materials in Li-ion batteries (LIBs). Interfacial optimization by loading metal particles on semiconductor can change the band structure and thus tune the inherent electrical nature of transition-metal oxide anode materials for energy applications. In this work, Au nanoparticles are epitaxially grown on MnO2 nanoroads (MnO2–Au). Interestingly, the MnO2–Au anode shows excellent electrochemical activity. It delivers high reversible capacity (about 2–3 fold compared to MnO2) and high rate capability (740 mA h g−1 at 1 A g−1). The electron holography and density functional theory (DFT) results demonstrate that the Au particles on the surface of MnO2 can form a negative charge accumulation area, which not only improves the Li ion migration rate but also catalyzes the transition of MnOx to Mn0. This study provides a direction to heterointerface fabrication for transition-metal oxide anode materials with desired properties for high-performance LIBs and future energy applications.
机译:离子迁移率低和不可逆转的变化过渡金属氧化物的价态限制其应用程序作为阳极材料锂离子电池(LIBs)。通过加载金属颗粒在半导体改变能带结构,从而优化固有电过渡金属的性质氧化物阳极材料对能源的应用程序。这项工作,非盟外延生长纳米粒子在汇总nanoroads (MnO2-Au)。MnO2-Au阳极显示优良的电化学活动。相比(约2 - 3倍汇总)和高速度能力(740毫安h g−1 1 g−1)。电子全息术和密度泛函理论(DFT)结果表明,非盟粒子汇总表面可以形成一个负电荷聚集区,不仅提高了李离子迁移率也催化过渡MnOx Mn0。方向异质结面制作过渡金属氧化物阳极材料高性能LIBs和所需的属性未来能源的应用程序。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号