...
首页> 外文期刊>Nanoscale >Maximization of thermal conductance at interfaces via exponentially mass-graded interlayers
【24h】

Maximization of thermal conductance at interfaces via exponentially mass-graded interlayers

机译:热导率在接口的最大化通过指数mass-graded夹层

获取原文
获取原文并翻译 | 示例

摘要

We propose a strategy to potentially best enhance interfacial thermal transport through solid-solid interfaces by adding nano-engineered, exponentially mass-graded intermediate layers. This exponential design rule results in a greater enhancement than a linearly mass-graded interface. By combining calculations using non-equilibrium Green's functions (NEGF) and non-equilibrium molecular dynamics (NEMD), we investigated the role of impedance matching and anharmonicity in the enhancement in addition to geometric parameters such as the number of layers and the junction thickness. Our analysis shows that the effect on thermal conductance is dominated by the phonon thermalization through anharmonic effects, while elastic phonon transmission and impedance matching play a secondary role. In the harmonic limit, increasing the number of layers results in greater elastic phonon transmission at each individual boundary, countered by the decrease of available conducting channels. Consequently, conductance initially increases with number of layers due to improved bridging, but quickly saturates. The presence of slight anharmonic effects (at very low temperature, T = 2 K) turns the saturation into a monotonically increasing trend. Anharmonic effects can further facilitate interfacial thermal transport through the thermalization of phonons at moderate temperatures. At high temperature, however, the role of anharmonicity as a facilitator of interfacial thermal transport reverses. Strong anharmonicity introduces significant intrinsic resistance, overruling the enhancement in thermal conduction at the boundaries. It follows that at a particular temperature, there exists a corresponding junction thickness at which thermal conductance is maximized.
机译:我们提出一个策略可能最好的增强通过固相固相界面热传输通过添加纳米工程接口,指数mass-graded过渡层。这个指数设计规则导致更大比线性mass-graded增强接口。(NEGF)和非平衡格林函数非平衡分子动力学(NEMD),我们阻抗匹配的作用,调查除了非谐性的增强的层数等几何参数结厚度。这对热导率的影响由声子热化非谐效应,而弹性声子传输和阻抗匹配次要的角色。层的数量会导致更大的弹性声子传输在每个单独的边界,减少可用的进行反击频道。由于改善随层数桥接,但很快浸透。轻微的非谐效应(在非常低温度、T = 2 K)饱和成单调递增的趋势。可以进一步促进界面的影响热传输的热化声子在中等温度下。然而,温度非谐性的作用作为主持人的界面热传输逆转。重要的固有电阻,否决增强在热传导边界。温度,存在一个对应的结厚度的热导率是最大化。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号