...
【24h】

Dissipation in oblique slow shocks

机译:耗散在斜减缓冲击

获取原文
获取原文并翻译 | 示例
           

摘要

Ion and electron dynamics and dissipation in collisionless slow mode shocks are examined using one-dimensional hybrid (kinetic ions, massless fluid electrons) and full particle (kinetic ions and electrons) simulations. In the hybrid code, two types of electron fluid models are used to determine the role of electrons: an adiabatic electron fluid model, which uses a scalar electron pressure, and the electron pressure tensor model, in which effects of the downstream electron temperature anisotropy with respect to the local magnetic field direction can be modeled. Comparing results from full particle and hybrid simulations that use an adiabatic electron fluid, the dynamics of slow shocks with the shock normal angle Bn ranging from moderate to very oblique (60°–84°) are explored for the upstream ion and electron β value of 0.1. At moderate Bn, the two types of simulations give comparable results, and the shock dissipation is provided primarily by the ions. However, as Bn increases, more significant differences are found between the two types of simulations, which indicates that the ion dissipation alone is inadequate to set up the shock and that additional electron physics is needed. At highly oblique Bn, the downstream electron temperature becomes anisotropic (T e > T e ) in full particle simulations, similar to that observed for the ion plasma in both type of simulations, while the electron inertial effects are negligible. The electron anisotropy results from both the large mirror effects and the electron acceleration/heating by the parallel electric field of very obliquely propagating kinetic Alfvén waves excited by ion-ion streaming in the shock. The additional electron dynamics in the wave fields lead to spiky structures in the shock ramp in the density and the ion and electron parallel temperature/pressure. We present hybrid simulations of very oblique slow shocks ( Bn = 84°) that retain the electron pressure tensor calculations. Results show that the inclusion of the downstream electron temperature anisotropy and of the resulting quasi-viscous effects in hybrid methods allows slow shocks to be set up at very oblique angles, as observed in the distant tail, when dissipation from ion-ion streaming becomes much weaker.
机译:离子和电子动力学和耗散无碰撞的慢模式冲击检查使用一维混合(动态离子质量流体电子)和完整的粒子(离子动能和电子)模拟。用于两种类型的电子流体模型确定电子的作用:绝热电子流体模型,它使用一个标量电子压力,电子压力张量模型,下游的影响电子温度各向异性有关当地磁场方向建模。混合模拟使用绝热电子液体,缓慢的动态冲击的冲击正常的角Bn从温和到非常斜(60°-84°)是上游的探索离子和电子的β值0.1。这两种类型的模拟给可比结果,冲击损耗主要由离子。更重要的之间的差异被发现这两种类型的模拟,这表明离子耗散本身是不够的设置的震惊和附加的电子物理学是必要的。下游电子温度变得各向异性(T e > T e)的粒子模拟,类似于观察到的离子等离子体在两种类型的模拟,电子惯性的影响可以忽略不计。两大电子各向异性的结果镜子和电子的影响加速度/并行电加热场的间接传播动力学阿尔芬波兴奋的离子间流冲击。波领域的冲击导致的结构坡道的密度和离子和电子温度/压力平行。模拟的斜减缓冲击(Bn =84°),保留电子压力张量计算。下游电子温度各向异性和产生的半粘性的影响混合方法允许在减缓冲击非常斜的角度,观察到在遥远的尾巴,当从离子间流耗散变得越来越弱。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号