首页> 外文期刊>Journal of Geophysical Research, A. Space Physics: JGR >The Origins of Long-Term Variability in Martian Upper Atmospheric Densities
【24h】

The Origins of Long-Term Variability in Martian Upper Atmospheric Densities

机译:起源的火星的长期变化上层大气密度

获取原文
获取原文并翻译 | 示例
           

摘要

We quantify and interpret the long-term variability of dayside Martian upper thermosphere and lower exosphere densities within 180–275 km altitudes. Atmospheric CO_2, N_2, O, and Ar densities are from NASA Mars Atmosphere and Volatile EvolutioN (MAVEN) observations during the time period of 2015–2020 near solar minimum. These neutral measurements, together with contemporaneous solar irradiance measurements at Mars, enable disentanglement of the orbital effect (due to the annual Sun-Mars distance change with solar longitude) and the solar extreme ultraviolet (EUV) effect in atmospheric density variations. The relative importance of these two effects, which is obtained using a statistical method of Dominance Analysis, reveals the competition between the indirect effect of solar infrared (via the upward coupling from the middle atmosphere) and the direct effect of solar EUV (due to local heating). Our results show that, unlike the orbital effect which is relatively constant at low altitudes and then decreases with increasing altitude, the solar EUV effect nearly monotonically increases. These two effects are comparable at high altitudes (about 240/270/205 km for CO_2/N_2/O). This analysis is extended to include long-term exospheric mass density estimates near 400 km from Mars Global Surveyor and Mars Odyssey data, with a focus on representative solar cycle phases of solar minimum and maximum. It is found that near 400 km, the orbital effect is always a key driver regardless of the solar cycle phase, while the solar EUV effect plays a minor role during solar minimum and is greatly enhanced and slightly exceeds the orbital effect during solar maximum.
机译:我们量化和解释长期可变性的光面的火星上热大气层和较低的外逸层密度在180 - 275公里海拔。密度来自NASA火星大气和挥发性进化(MAVEN)期间的观察2015 - 2020年的时间接近太阳。这些中性的测量,在一起同时期的太阳辐照度的测量火星,使轨道的解开纠结效果(由于年度Sun-Mars距离改变太阳能经度)和太阳在大气极端紫外线(EUV)效果密度的变化。这两个效应,这是获得使用统计方法的优势分析,揭示了之间的竞争的间接效应从太阳红外(通过向上的耦合中层大气)和太阳能的直接影响EUV(由于局部加热)。这是,与轨道效应海拔较低的相对稳定太阳能EUV随高度增大而减小效果几乎单调增加。在高海拔地区(大约影响可比性二氧化碳/甲烷/ O 240/270/205公里)。扩展到包括长期外逸层的质量密度估计火星全球近400公里验船师和火星奥德赛号数据,关注代表太阳的太阳周期阶段最小值和最大值。公里,轨道效应一直是一个关键驱动因素不管太阳周期阶段,虽然在太阳能太阳能EUV效应扮演一个次要角色最小值和极大的增强和略在太阳能最大超过轨道效应。

著录项

  • 来源
    《Journal of Geophysical Research, A. Space Physics: JGR》 |2022年第3期|2021JA030145-1-2021JA030145-23|共23页
  • 作者单位

    Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO, USA;

    Ann and H.J. Smead Department of Aerospace Engineering Sciences, University of Colorado, Boulder, CO, USA;

    Center for Space Sciences and Technology, University of Maryland, Baltimore County, Baltimore, MD, USASpace Science Institute, Boulder, CO, USASpace Sciences Laboratory, University of California, Berkeley, CA, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 英语
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号