...
首页> 外文期刊>Journal of Geophysical Research, A. Space Physics: JGR >Understanding shock dynamics in the inner heliosphere with modeling and type II radio data: A statistical study
【24h】

Understanding shock dynamics in the inner heliosphere with modeling and type II radio data: A statistical study

机译:冲击动力学的理解日球层建模和II型无线电数据:统计研究

获取原文
获取原文并翻译 | 示例
           

摘要

[1] We study two methods of predicting interplanetary shock location and strength in the inner heliosphere: (1) the ENLIL simulation and (2) the kilometric type II (kmTII) prediction. To evaluate differences in the performance of the first method, we apply two sets of coronal mass ejections (CME) parameters from the cone-model fitting and flux-rope (FR) model fitting as input to the ENLIL model for 16 halo CMEs. The results show that the ENLIL model using the actual CME speeds from FR-fit provided an improved shock arrival time (SAT) prediction. The mean prediction errors for the FR and cone-model inputs are 4.90 ± 5.92 h and 5.48 ± 6.11 h, respectively. A deviation of 100 km s~(–1) from the actual CME speed has resulted in a SAT error of 3.46 h on average. The simulations show that the shock dynamics in the inner heliosphere agrees with the drag-based model. The shock acceleration can be divided as two phases: a faster deceleration phase within 50 Rs and a slower deceleration phase at distances beyond 50 Rs. The linear-fit deceleration in phase 1 is about 1 order of magnitude larger than that in phase 2. When applying the kmTII method to 14 DH-km CMEs, we found that combining the kmTII method with the ENLIL outputs improved the kmTII prediction. Due to a better modeling of plasma density upstream of shocks and the kmTII location, we are able to provide a more accurate shock time-distance and speed profiles. The mean kmTII prediction error using the ENLIL model density is 6.7 ± 6.4h; it is 8.4 ± 10.4 h when the average solar wind plasma density is used. Applying the ENLIL density has reduced the mean kmTII prediction error by~2 h and the standard deviation by 4.0 h. Especially when we applied the combined approach to two interacting events, the kmTII prediction error was drastically reduced from 29.6 h to –4.9 h in one case and 10.6 h to 4.2 h in the other. Furthermore, the results derived from the kmTII method and the ENLIL simulation, together with white-light data, provide a valuable validation of shock formation location and strength. Such information has important implications for solar energetic particle acceleration.
机译:[1],我们研究两种预测方法行星际激波位置和强度内心的日球层:(1)伊利尔模拟和(2)公里的II型(kmTII)预测。评估的性能差异第一个方法,我们运用两套日冕物质从cone-model抛射(CME)参数拟合和通量绳(FR)模型拟合作为输入伊利尔模型16光环太阳风暴。显示,伊利尔模型使用实际的芝加哥商品交易所速度从FR-fit提供一种改进的冲击到达时间(SAT)的预测。FR和cone-model预测错误输入4.90±5.92 h和5.48±6.11 h,分别。实际的CME速度导致了错误平均为3.46 h。冲击动力学的内在的日球层同意drag-based模型。加速度可以划分为两个阶段:一个在Rs和50快减速期慢减速期在距离超过50岁在阶段1 Rs。linear-fit减速大约比大数量级阶段2。kmTII DH-km cme时,我们发现相结合方法和伊利尔输出提高了kmTII预测。上游的冲击和kmTII密度位置,我们能够提供一个更准确的休克时距和速度概要文件。kmTII使用伊利尔模型预测误差密度是6.7±6.4 h;使用平均太阳风等离子体密度。应用伊利尔密度降低了的意思kmTII ~ 2 h和预测误差的标准偏差4.0 h。尤其是当我们应用两个相互作用的事件的组合方法,kmTII预测错误是巨大的从29.6小时减少到-4.9 h在一个案例中,10.6 h - 4.2 h。来源于kmTII方法和结果伊利尔模拟,以及白光数据,提供一个有价值的冲击形成的验证位置和强度。太阳能能量的重要意义粒子加速。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号