首页> 外文期刊>Journal of Geophysical Research, A. Space Physics: JGR >Attribution of ionospheric vertical plasma drift perturbations to large-scale waves and the dependence on solar activity
【24h】

Attribution of ionospheric vertical plasma drift perturbations to large-scale waves and the dependence on solar activity

机译:归因的电离层垂直等离子体漂移大型波浪和扰动太阳活动的依赖

获取原文
获取原文并翻译 | 示例
           

摘要

In this study, we quantify the contribution of individual large-scale waves to ionospheric electrodynamics and examine the dependence of the ionospheric perturbations on solar activity. We focus on migrating diurnal tide (DW1) plus mean winds, migrating semidiurnal tide (SW2), quasi-stationary planetary wave one (QSPW1), and nonmigrating semidiurnal westward wave one (SW1) under northern winter conditions, when QSPW1 and SW1 are climatologically strong. From thermosphere-ionosphere-mesosphere electrodynamics general circulation model simulations under solar minimum conditions, it is found that the mean winds and DW1 produce a wave two pattern in equatorial vertical E×Bdrift that is upward in the morning and around dusk. The modeled SW2 also produces a wave two pattern in the ionospheric vertical drift that is nearly a half wave cycle out of phase with that due to mean winds and DW1. SW1 can cause large vertical drifts around dawn, while QSPW1 does not have any direct impact on the vertical drift. Wind components of both SW2 and SW1 become large at middle to high latitudes in the E-region, and kernel functions obtained from numerical experiments reveal that they can significantly affect the equatorial ion drift, likely through modulating the E-region wind dynamo. The most evident changes of total ionospheric vertical drift when solar activity is increased are seen around dawn and dusk, reflecting the more dominant role of large F-region Pedersen conductivity and of the F-region dynamo under high solar activity. Therefore, the lower atmosphere driving of the ionospheric variability is more evident under solar minimum conditions, not only because variability is more identifiable in a quieter background but also because the E-region wind dynamo is more significant. These numerical experiments also demonstrate that the amplitudes, phases, and latitudinal and vertical structures of large-scale waves are important in quantifying the ionospheric responses.
机译:在这项研究中,我们量化的贡献个别大型电波以电离层电动力学和检查的依赖电离层扰动在太阳活动。关注迁移全日潮(DW1) +的意思风,迁移半日潮(SW2),似稳行星波(QSPW1),nonmigrating半日波西(SW1)在北方冬季条件下,当QSPW1和SW1是气候强劲。thermosphere-ionosphere-mesosphere电动力学环流模式模拟太阳能最低的条件下,它是发现平均风和DW1产生一波两个模式在赤道垂直E×Bdrift是向上的早晨和黄昏。建模SW2还生产一波两种模式近的电离层垂直漂移半波周期的阶段,由于意味着风和DW1。飘在黎明时分,QSPW1没有任何直接对垂直漂移的影响。组件SW2和SW1变得很大中间E-region中高纬度地区,从数值计算获得的内核函数实验表明,它们可以显著影响赤道离子漂移,可能通过调制E-region风力发电机。总电离层垂直的明显变化漂移,当太阳活动增加在黎明和黄昏,反映出更多主导作用的大型F-region了点电导率和F-region发电机高的太阳活动。大气电离层变化的驱动更明显的是在太阳活动极小期条件下,不仅因为可变性更可识别的在一个安静的背景也因为E-region风力发电机是更重要的。数值实验也证明振幅、阶段和纬向和垂直结构的大规模波是重要的量化电离层响应。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号