...
首页> 外文期刊>Journal of Geophysical Research, A. Space Physics: JGR >Influence of He++ and Shock Geometry on Interplanetary Shocks in the Solar Wind: 2D Hybrid Simulations
【24h】

Influence of He++ and Shock Geometry on Interplanetary Shocks in the Solar Wind: 2D Hybrid Simulations

机译:他+ +和冲击几何的影响在太阳风星际冲击:2 d混合模拟

获取原文
获取原文并翻译 | 示例
           

摘要

After protons, alpha particles (He~(++)) are the most important ion species in the solar wind, constituting typically about 5% of the total ion number density. Due to their different charge-to-mass ratio, protons and He~(++) particles are accelerated differently when they cross the electrostatic potential in a collisionless shock. This behavior can produce changes in the velocity distribution function (VDF) for both species generating anisotropy in the temperature, which is considered to be the energy source for various phenomena such as ion cyclotron and mirror mode waves. How these changes in temperature anisotropy and shock structure depend on the percentage of He~(++) particles and the geometry of the shock is not completely understood. In this paper, we have performed various 2D local hybrid simulations (particle ions, massless fluid electrons) with similar characteristics (e.g., Mach number) to interplanetary shocks for both quasi-parallel and quasi-perpendicular geometries self-consistently including different percentages of He++ particles.We have found changes in the shock transition behavior as well as in the temperature anisotropy as functions of both the shock geometry and He~(++) particle abundance: The change of the initial θBn leads to variations of the efficiency with which particles can escape to the upstream region facilitating or not the formation of compressive structures in the magnetic field that will produce increments in perpendicular temperature. The regions where both temperature anisotropy and compressive fluctuations appear tend to be more extended and reach higher values as the He~(++) content in the simulations increases.
机译:质子后,阿尔法粒子(他~ (+ +))最重要的是在太阳风离子物种,构成典型的离子总量的5%左右数密度。荷质比、质子和他~ (+ +)粒子加速时不同交叉中的静电势无碰撞的冲击。速度分布函数的变化(氟乙烯)两个物种生成各向异性温度,这被认为是能源对各种离子等现象回旋加速器和镜像模式。温度各向异性的变化和冲击结构取决于他~(+ +)的百分比粒子冲击的几何形状并不是完全理解。执行各种二维局部混合模拟(粒子离子质量流体电子)类似的特征(例如,马赫数)星际quasi-parallel和冲击quasi-perpendicular几何图形自我一贯地包括他+ +不同的比例粒子。过渡行为以及温度各向异性函数的冲击几何和他~(+ +)粒子数量:初始θBn的变化导致的变化粒子可以逃脱的效率上游地区促进或不是抗压结构的形成磁场将产生增量垂直温度。温度各向异性和抗压波动显得更倾向于扩展达到更高的值作为他~(+ +)含量模拟增加。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号