...
首页> 外文期刊>Nanoscale >Normal-pressure microwave rapid synthesis of hierarchical SnO2@rGO nanostructures with superhigh surface areas as high-quality gas-sensing and electrochemical active materials
【24h】

Normal-pressure microwave rapid synthesis of hierarchical SnO2@rGO nanostructures with superhigh surface areas as high-quality gas-sensing and electrochemical active materials

机译:常压微波快速合成分层SnO2@rGO纳米结构与超高的表面区域高质量气敏和电化学活性材料

获取原文
获取原文并翻译 | 示例

摘要

Hierarchical SnO2@rGO nanostructures with superhigh surface areas are synthesized via a simple redox reaction between Sn~(2+) ions and graphene oxide (GO) nanosheets under microwave irradiation. XRD, SEM, TEM, XPS, TG-DTA and N2 adsorption-desorption are used to characterize the compositions and micro-structures of the SnO2@rGO samples obtained. The SnO2@rGO nanostructures are used as gas-sensing and electroactive materials to evaluate their property-microstructure relationship. The results show that SnO2 nanoparticles (NPs) with particle sizes of 3-5 nm are uniformly anchored on the surfaces of reduced graphene oxide (rGO) nanosheets through a heteronucleation and growth process. The as-obtained SnO2@rGO sample with a hierarchically sesame cake-like microstructure and a superhigh specific surface area of 2110.9 m~2 g~(-1) consists of 92 mass% SnO2 NPs and ~8 mass% rGO nanosheets. The sensitivity of the SnO2@rGO sensor upon exposure to 10 ppm H2S is up to 78 at the optimal operating temperature of 100 °C, and its response time is as short as 7 s. Compared with SnO2 nanocrystals (5-10 nm), the hierarchical SnO2@rGO nanostructures have enhanced gas-sensing behaviors (i.e., high sensitivity, rapid response and good selectivity). The SnO2@rGO nanostructures also show excellent electroactivity in detecting sunset yellow (SY) in 0.1 M phosphate buffer solution (pH = 2.0). The enhancement in gas-sensing and electroactive performance is mainly attributed to the unique hierarchical microstructure, high surface areas and the synergistic effect of SnO2 NPs and rGO nanosheets.
机译:分层SnO2@rGO纳米结构与通过一个合成超高的表面区域简单的氧化还原反应之间Sn ~(2 +)离子和石墨烯氧化物(去)nanosheets微波辐照。adsorption-desorption用于描述的成分和微结构SnO2@rGO样本。纳米结构作为气敏电活性材料来评估他们property-microstructure关系。表明,SnO2纳米粒子与粒子(NPs)尺寸3 - 5 nm均匀固定在减少氧化石墨烯表面(rGO)通过heteronucleation nanosheets和增长的过程。分层次芝麻做成微观结构和超高的比表面积为2110.9m ~ 2 g ~(1)由92质量%的SnO2 NPs ~ 8质量% rGO nanosheets。SnO2@rGO传感器在接触10 ppm硫化氢到78年在100年的最佳工作温度°C,其响应时间短的7 s。相比之下,SnO2纳米晶体(5 - 10海里),分层SnO2@rGO纳米结构有提高气敏的行为(例如,高敏感、快速响应和良好的选择性)。展示优秀electroactivity检测日落黄(SY) 0.1磷酸盐缓冲剂解决方案(pH = 2.0)。气敏性能和电活性主要归功于独特的层次微观结构、高表面积和协同效应的SnO2 NPs rGOnanosheets。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号