...
首页> 外文期刊>Comparative biochemistry and physiology, Part B. Biochemistry & molecular biology >Elevated temperature and pco_2 shift metabolic pathways in differentially oxidative tissues of notothenia rossii
【24h】

Elevated temperature and pco_2 shift metabolic pathways in differentially oxidative tissues of notothenia rossii

机译:升高温度和pco_2代谢转变通路在不同氧化的组织

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Mitochondrial plasticity plays a central role in setting the capacity for acclimation of aerobic metabolism in ectotherms in response to environmental changes. We still lack a clear picture if and to what extent the energy metabolism and mitochondrial enzymes of Antarctic fish can compensate for changing temperatures or PCO_2 and whether capacities for compensation differ between tissues. We therefore measured activities of key mitochondrial enzymes (citrate synthase (CS), cytochrome c oxidase (COX)) from heart, red muscle, white muscle and liver in the Antarctic fish Notothenia rossii after warm- (7°C) and hypercapnia- (0.2kPa CO_2) acclimation vs. control conditions (1°C, 0.04kPa CO_2). In heart, enzymes showed elevated activities after cold-hypercapnia acclimation, and a warm-acclimation-induced upward shift in thermal optima. The strongest increase in enzyme activities in response to hypercapnia occurred in red muscle. In white muscle, enzyme activities were temperature-compensated. CS activity in liver decreased after warm-normocapnia acclimation (temperature-compensation), while COX activities were lower after cold- and warm-hypercapnia exposure, but increased after warm-normocapnia acclimation. In conclusion, warm-acclimated N. rossii display low thermal compensation in response to rising energy demand in highly aerobic tissues, such as heart and red muscle. Chronic environmental hypercapnia elicits increased enzyme activities in these tissues, possibly to compensate for an elevated energy demand for acid-base regulation or a compromised mitochondrial metabolism, that is predicted to occur in response to hypercapnia exposure. This might be supported by enhanced metabolisation of liver energy stores. These patterns reflect a limited capacity of N. rossii to reorganise energy metabolism in response to rising temperature and PCO_2.
机译:线粒体可塑性中起着重要的作用设置有氧的适应环境的能力代谢在回应的冷血动物环境的变化。图片是否以及在多大程度上的能量代谢及线粒体酶的南极鱼可以弥补改变温度或PCO_2以及是否赔偿能力组织之间的不同。活动的关键线粒体酶(柠檬酸合酶(CS),细胞色素c氧化酶(COX))心,红色肌肉,白色的肌肉和肝脏南极鱼Notothenia温暖——后俄罗斯(7°C)和血碳酸过多症——(0.2 kpa二氧化碳)适应环境与控制条件(1°C, 0.04 kpa二氧化碳)。心,酶显示活动后升高cold-hypercapnia适应,热warm-acclimation-induced向上转变最适条件。为了应对血碳酸过多症发生在活动红色的肌肉。温度补偿。肝脏warm-normocapnia后减少适应环境(温度补偿),考克斯活动是冷,后降低warm-hypercapnia曝光,但后增加warm-normocapnia适应。俄罗斯warm-acclimated n与显示低热补偿,以应对日益增长的能源需求在高度有氧组织,如心脏和红色肌肉。增加酶活性在这些组织中,可能是为了弥补能量升高酸碱调节需求或妥协线粒体代谢,预计发生在应对血碳酸过多症。可能得到增强的metabolisation支持肝脏能量存储。俄罗斯n与重组的能力有限能量代谢以应对上升温度和PCO_2。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号