首页> 外文期刊>Chemistry Select >Facile Hydrothermal Synthesis of MnWO4 Nanorods for Non-Enzymatic Glucose Sensing and Supercapacitor Properties with Insights from Density Functional Theory Simulations
【24h】

Facile Hydrothermal Synthesis of MnWO4 Nanorods for Non-Enzymatic Glucose Sensing and Supercapacitor Properties with Insights from Density Functional Theory Simulations

机译:MNWO4纳米棒的简便水热合成,用于非酶葡萄糖传感和超级电容器的特性,具有来自密度功能理论模拟的见解

获取原文
获取原文并翻译 | 示例
           

摘要

Here we report a facile and novel hydrothermal method to grow MnWO4 nanorods and their electrochemical glucose sensing and supercapacitor properties have been investigated. MnWO4 nanorods exhibited good glucose sensing performance with sensitivity of 13.7 mAmM~(-1)cm~(-2) in the 5–110 μM linear range and specific capacitance of 199 F/g at 2 mV/s and 256.41 F/g at 0.4 A/g. First principles simulations have also been carried out to qualitatively support our experimental observations by investigating the bonding and charge transfer mechanism of glucose on MnWO4 through demonstration of Partial Density of States and charge density distributions. Large Density of States near Fermi level and empty d states around 2 eV above Fermi level of Mn d orbital qualify MnWO4 as communicating media to transfer the charge from glucose by participating in the redox reactions. Insight into the electronic structure reveals that there is charge transfer from oxygen p orbital of glucose to d orbital of Mn. Also, the quantum capacitance of MnWO4 electrodes has been presented to justify its supercapacitor performance. The maximum quantum capacitance of 762 μF/cm~2 is obtained which is mostly contributed by the d electrons of Mn. Our experimental data and theoretical insight strongly infer that MnWO4 has the potential to be tailored as efficient and high-performance glucose sensing and energy storage devices.
机译:在这里,我们报告了一种简单而新颖的热液方法,可以研究MNWO4纳米棒及其电化学葡萄糖感应和超级电容器的特性。 MNWO4纳米棒在5–110μm线性范围内表现出良好的葡萄糖传感性能,灵敏度为13.7 mamm〜(-1)cm〜(-2),在2 mV/s和256.41 f/g处于199 f/g的特异性电容,在256.41 f/g处。 0.4 A/g。还进行了第一原理模拟,以通过研究状态的部分密度和电荷密度分布来研究MNWO4上葡萄糖的粘结和电荷转移机制,从而在定性上支持我们的实验观察。在费米水平附近和空的D状态附近的大密度高于费米水平的2 eV水平,符合MNWO4的MNWO4作为传播培养基,通过参与氧化还原反应来传递葡萄糖的电荷。对电子结构的洞察力表明,从葡萄糖的氧轨道到Mn的d轨道有电荷转移。此外,已经提出了MNWO4电极的量子电容,以证明其超级电容器的性能是合理的。获得了762μF/cm〜2的最大量子电容,这主要由Mn的D电子贡献。我们的实验数据和理论洞察力强烈推断,MNWO4有可能定制为高效且高性能的葡萄糖传感和能量存储设备。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号