首页> 外文期刊>Chemistry Select >Hybrid Films of Ni(OH)2 Nanowall Networks on Reduced Graphene Oxide Prepared at a Liquid/Liquid Interface for Oxygen Evolution and Supercapacitor Applications
【24h】

Hybrid Films of Ni(OH)2 Nanowall Networks on Reduced Graphene Oxide Prepared at a Liquid/Liquid Interface for Oxygen Evolution and Supercapacitor Applications

机译:Ni(OH)的杂种膜2纳米级网络在液体/液体界面上制备的还原石墨烯,用于氧气和超级电容器应用

获取原文
获取原文并翻译 | 示例
           

摘要

Free-standing films of reduced graphene oxide(rGO)based Ni(OH)2 nanowall structures are generated at a liquid/liquid interface involving in situ reaction and self-assembly.The nanowall network of Ni(OH)2 sheets anchored on rGO layers with 10–15 nm wall thickness and ordered voids of average size 100 nm can serve as excellent candidates for catalyzing electrochemical oxygen evolution reaction(OER)as they expose maximum edge sites of Ni(OH)2 and allow diffusion and penetration of electrolytes into voids enhancing the contact area of the electrolyte/electrocatalyst interface.The unique morphology of the hybrid films exhibited high electrochemical surface area and low charge transfer resistance.Accordingly,rGO-Ni(OH)2 hybrid films display excellent catalytic activity and high cycling stability in alkaline solutions giving a current density of 10 mAcm~(-2)at an overpotential of 378 mV with a Tafel slope of 56 mVdec?? 1.The hybrid films also exhibited a high specific and areal capacitance of 1402 Fg~(-1)and 98.12 mFcm~(-2)at a scan rate of 5 mVs?? 1.OER activity and capacitance of the hybrid rGO?? Ni(OH)2 films are higher compared to that of bare Ni(OH)2 film and is attributed to the synergic effect between the rGO layer and the ordered interconnected nanowall Ni(OH)2 nanostructures.The primary advantage of these hybrid films is that they can be collected on the desired substrate for ready use as electrodes without the use of any external binders.
机译:基于氧化石墨烯(RGO)的自由膜的Ni(OH)2纳米构造结构是在涉及原位反应和自组装的液体/液体界面上生成的。NI(OH)的NaNowall网络2片固定在RGO层上具有10–15 nm的壁厚和平均尺寸100 nm的有序空隙,可以作为催化电化学氧演化反应(OER)的出色候选物,因为它们暴露了Ni(OH)2的最大边缘位点,并允许扩散和渗透电解质进入空隙。增强电解质/电催化剂界面的接触区域。混合膜的独特形态表现出高电化学表面积和低电荷转移电阻。相当有ROGO-NI(OH)2杂交膜显示出极好的催化活性和高循环稳定性溶液在378 mV的超电势下,电流密度为10 MACM〜(-2),TAFEL斜率为56 mVdec? 1.混合膜还以5 mV的扫描速率表现出高特异性和面积的电容为1402 fg〜(-1)和98.12 MFCM〜(-2)? 1.混合RGO的OER活性和电容?与Bare Ni(OH)2膜相比,Ni(OH)2膜更高,归因于RGO层与有序互连的NanoWall Ni(OH)2纳米结构之间的协同作用。这些混合膜的主要优势是可以将它们收集在所需的基材上,以便无需使用任何外部粘合剂即可用作电极。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号