首页> 外文期刊>Chemistry Select >Preparation and Characterization of n-Nonadecane/CaCO3 Microencapsulated Phase Change Material for Thermal Energy Storage
【24h】

Preparation and Characterization of n-Nonadecane/CaCO3 Microencapsulated Phase Change Material for Thermal Energy Storage

机译:N-Nonadecane/CACO3微封装的相变材料的制备和表征

获取原文
获取原文并翻译 | 示例
           

摘要

A novel microencapsuled thermal energy storage phase change material (MicroEPCM) based on n-nonadecane core and CaCO3 shell were synthesized via a self-assembly method. The chemical structure, surface morphology and thermal properties of the MicroEPCM were investigated by X-ray diffractometer (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermogravimetric analyzer (TGA), respectively. The effects of core/shell mass ratios, stirring speed, temperature and emulsifier concentration on the morphology and thermal properties of the MicroEPCM were investigated to confirm the most suitable CaCO3-encapsulated n-nonadecane reaction conditions. The results showed that the optimal spherical morphology and the highest latent heat were obtained when the stirring rate is 800 rpm, the temperature is 45°C, the emulsifier concentration is 15 mmol/L and the core/shell mass ratio is 3:1. The latent heat and encapsulation rate of Micro- EPCM as above-mentioned are 134.83 J/g and 59.68%, respec- tively. The thermal conductivity of MicroEPCM is improved up to 3.56 times than that of prinstine n-nonadecane. The Micro- EPCM did not leak after being heated at 80°C for 20 h, which proves that the CaCO3 shell is compact. The MicroEPCM present a good thermal stability after 200 thermal cycling. The Micro- EPCM also has been proved to maintain high mechanical strength.
机译:通过自组装方法合成了一种基于N-非铁烷核心和CACO3壳的新型微封装的热量储能相变材料(微EPCM)。通过X射线衍射仪(XRD),傅立叶转换红外光谱(FTIR),扫描电子显微镜(SEM),差异扫描量刻孔克(DSC)和TGA分析仪(DSC)和热力学分析仪(TGA),研究了微EPCM的化学结构,表面形态和热特性。 ), 分别。研究了核/壳质量比,搅拌速度,温度和乳化剂浓度对微EPCM的形态和热性能的影响,以确认最合适的CACO3已封装的N-非洲烷反应条件。结果表明,当搅拌速率为800 rpm时,获得最佳球形形态和最高的潜热,温度为45°C,乳化剂浓度为15 mmol/l,核/壳质量比为3:1。上述为134.83 j/g和59.68%的微型EPCM的潜热和封装速率分别为134.83 J/g。微电导率的热电导率提高了3.56倍,比prinstine n-nonadecane的热电导率提高了3.56倍。在80°C加热20小时后,微型EPM不会泄漏,这证明CACO3壳是紧凑的。 MicroEPCM在200个热循环后具有良好的热稳定性。也已证明微型EPCM可以保持高机械强度。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号