...
首页> 外文期刊>IEEJ Transactions on Electrical and Electronic Engineering >Numerical Analysis of Microcoil-Induced Electric Fields and Evaluation ofIn vivoMagnetic Stimulation of the Mouse Brain
【24h】

Numerical Analysis of Microcoil-Induced Electric Fields and Evaluation ofIn vivoMagnetic Stimulation of the Mouse Brain

机译:微代油诱导的电场的数值分析和对小鼠脑的生命磁刺激的评估

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Magnetic stimulation is widely used as a medical treatment for neurological diseases. A reduction in the size of magnetic stimulation devices is desirable, however, because the coils are relatively large compared with electrode stimulation devices. Furthermore, in transcranial magnetic stimulation, the exact magnetically evoked areas in the brain and the mechanisms of neural activation are largely unknown. This study aimed to develop a new implantable microcoil device that stimulates the brain locally, on the order of several tens of micrometers, as well as to understand the mechanisms of micromagnetic stimulation-induced neural activity. First, to investigate the effects of microcoil shape on neural activation, the induced electric fields of semicircular microcoils with different diameters were calculated numerically in a microcoil model using the standard finite element method. Next, on the basis of the obtained numerical results from the microcoil model with different diameters, we compared the spatial properties of the possible activated areas in neural tissue and examined the most effective microcoil shape for neural activation. Finally, we measured microcoil-evoked responses using autofluorescent flavoprotein imaging of the mouse brainin vivo, evaluated the validity of our proposed microcoil devices, and discussed possible future improvements for a chronic implant. (c) 2020 Institute of Electrical Engineers of Japan. Published by Wiley Periodicals LLC.
机译:磁刺激被广泛用作神经疾病的医学治疗。但是,需要减小磁刺激装置的尺寸,因为与电极刺激装置相比,线圈相对较大。此外,在经颅磁刺激中,大脑中精确的磁诱发区域和神经激活的机制在很大程度上未知。这项研究旨在开发一种新的可植入的微型机器设备,该设备在几十微米的范围内局部刺激大脑,并了解微磁性刺激诱导的神经活性的机制。首先,为了研究微层形状对神经激活的影响,使用标准有限元方法在微金模型中计算了具有不同直径的半圆形微型机油的诱导电场。接下来,根据从微型模型获得不同直径的数值结果,我们比较了神经组织中可能的激活区域的空间特性,并检查了神经激活的最有效的微层形状。最后,我们使用小鼠脑蛋白体内的自动荧光黄蛋白成像测量了微型机油诱发的反应,评估了我们提出的微型机器设备的有效性,并讨论了慢性植入物的未来改善。 (c)2020年日本电气工程师研究所。由Wiley Wendericals LLC出版。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号