...
首页> 外文期刊>Sustainable Energy & Fuels >Realizing Li7La3Zr2O12 garnets with high Li+ conductivity and dense microstructures by Ga/Nb dual substitution for lithium solid-state battery applications
【24h】

Realizing Li7La3Zr2O12 garnets with high Li+ conductivity and dense microstructures by Ga/Nb dual substitution for lithium solid-state battery applications

机译:通过GA/NB双重替代锂固态电池应用,实现具有高LI+电导率和密集的微观结构的Li7LA3ZR2O12石榴石

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Li7La3Zr2.0O12 (LLZO) garnets have many properties of a suitable solid electrolyte for lithium ion batteries; however, drawbacks like their low ionic conductivity and poor interfacial properties still hinder their broadened application. Current research has sought to both increase their ionic conductivity and density their microstructure, which are two important factors relating to their practical application. This study presents a facile and effective way to obtain compact LLZO with high Li+ conductivity via a one-step multi-elemental doping strategy, using Nb5+ and Ga3+ as dopants simultaneously. Garnet-structured oxides with the nominal chemical composition of Li6.8-3xGaxLa3Zr1.8Nb0.2O12 (x = 0, 0.1, 0.15, 0.2, 0.25, and 0.3) are prepared via a conventional solid-state reaction, and the effects of the two dopants on the oxides are investigated based on the phase compositions, morphologies and Li ion conductivities. Benefitting from Li+ vacancies generated by the addition of the two elements, garnets sintered with an optimized amount of Ga/Nb dopant can exhibit relative densities of 93-95% and a peak conductivity of 1.42 x 10(-3) S cm(-1) at 50 degrees C. In a symmetric Li/LLZO/Li cell, this dense structured electrolyte shows a low overpotential and superior electrochemical stability to Li metal, exhibiting good performance for over 200 h at a current density of 100 mu A cm(-1) during Li plating/stripping cycles. Also, this co-doped solid-state electrolyte can exhibit acceptable cycling stability when paired with a LiNi0.33Mn0.33Co0.33O2 (NMC111) cathode, both with the help of liquid electrolyte and when assembled as an all-solid-state battery. We believe this research can provide some new insights into developing solid-state electrolyte-based lithium ion batteries.
机译:LI7LA3ZR2.0O12(LLZO)石榴石具有许多适合锂离子电池的固体电解质的特性;然而,诸如其离子电导率低和界面性质较差的缺点仍然阻碍了其扩展的应用。当前的研究试图提高其离子电导率和微观结构的密度,这是与其实际应用有关的两个重要因素。这项研究提出了一种通过单步多元素掺杂策略获得高LI+电导率的紧凑型LLZO,同时使用NB5+和GA3+同时作为掺杂剂。石榴石结构的氧化物具有Li6.8-3xgaxla3zr1.8nb0.2o12(x = 0,0,0.1,0.1,0.15,0.2,0.25和0.3)的名义化学成分)是通过常规固态反应制备的根据相组成,形态和液管传导率研究了氧化物上的两个掺杂剂。从增加两个元素产生的LI+空缺中,用优化量的GA/NB掺杂剂烧结的石榴石可以表现出93-95%的相对密度,峰值电导率为1.42 x 10(-3)s cm(-1 )在50度C处。在对称的LI/LLZO/LI细胞中,这种致密的结构化电解质表现出低电势和优质的电化学稳定性对Li Metal的稳定性,在100 MU A CM的电流密度下表现出超过200 h的良好性能( - 1)在LI镀金/剥离周期中。同样,当与Lini0.33MN0.33CO0.33O2(NMC111)阴极配对时,这种共掺杂的固态电解质可以表现出可接受的循环稳定性,均在液体电解质的帮助下,并且在组装为全硅状态电池时。我们认为,这项研究可以为开发基于固态电解质锂离子电池提供一些新的见解。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号