首页> 外文期刊>Chemistry Select >Evidence of Critical Tunnelling Width in Ensuring Spin Polarized Asymmetric Negative Differential Resistance Feature in Two-Dimensional g-C4N3-graphene-g-C4N3
【24h】

Evidence of Critical Tunnelling Width in Ensuring Spin Polarized Asymmetric Negative Differential Resistance Feature in Two-Dimensional g-C4N3-graphene-g-C4N3

机译:在二维G-C4N3晶格G-C4N3中确保自旋极化不对称负差分特征的临界隧穿宽度的证据

获取原文
获取原文并翻译 | 示例
           

摘要

We report herein existence of a critical tunnelling width beyond which graphitic tunnelling nanostructures exhibit asymmetric spin polarized negative differential resistance feature. Our theoretical foray quite clearly establishes that even with a simple two-dimensional tunnelling nanostructure created by an assembly of ferromagnetic graphitic carbon nitride (g-C4N3) electrodes separated by insulating graphene sheet of variable lengths, there exists a critical tunnelling width at which the system switches from symmetric to asymmetric negative differential resistance feature. Presence of robust spin filer efficiency (100%) over a wide range of bias variation (- 1.0 to +1.0 V) added with negative differential resistance action makes the device with shorter tunnelling width of 22.36 A and 31. 96 A potentially useful as multifunctional spintronic device. However, at the critical tunnelling width of 36.69 A and beyond the forward bias negative differential resistance features completely switches off and same is observed only in reverse bias. This switching action certainly opens up the prospect of logic gates operation in quantum circuits. Results obtained has been explained through transmission spectra, transmission pathways and molecular projected self-consistent Hamiltonian states analysis. Emergence of asymmetric I-V curve beyond critical tunnelling width has been explained by examining differences in spin injection coefficients.
机译:我们在此报告存在临界隧道宽度,超出该隧道宽度,石墨隧道纳米结构表现出不对称的自旋偏光差分电阻特征。我们的理论尝试很清楚地表明,即使使用由铁电磁石墨氮化碳(G-C4N3)电极组装而产生的简单二维隧道纳米结构,该电极通过将可变长度的绝缘石墨烯片隔开,也存在着一个关键的隧道宽度从对称到不对称的负差分电阻特征的开关。具有负差分电阻作用的较大偏差变化(-1.0至+1.0 V)的强大自旋申请效率(100%)的存在使该设备的隧道宽度为22.36 A和31。96潜在地用作多功能的多功能性。自旋装置。但是,在临界隧道宽度为36.69 A及以后的正向偏置偏差电阻特征完全关闭,并且仅在反向偏置中观察到相同的差异。这种切换动作无疑打开了量子电路中逻辑门操作的前景。获得的结果已通过传输光谱,传输途径和分子预测的自洽的哈密顿状态分析来解释。通过检查自旋注射系数的差异,已经解释了超出关键隧道宽度的不对称I-V曲线的出现。

著录项

  • 来源
    《Chemistry Select》 |2021年第27期|6916-6924|共9页
  • 作者单位

    Department of Physics, JIS College of Engineering, Block-A, Phase-III, Kalyani, Nadia PIN-741235, India;

    Department of Chemistry, NIT-Calicut, Calicut Mukkam Road, Kattangal, Kerala 673601, India;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 英语
  • 中图分类 Online;
  • 关键词

    Tunneling; Spintronics;

    机译:隧道;旋转型;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号