...
首页> 外文期刊>Chemistry Select >Atomistic Insight into Thermal Decomposition of 1,3,5-Triamino-2,4,6-trinitrobenzene Nanoparticles According to the ReaxFF Molecular Dynamics Method
【24h】

Atomistic Insight into Thermal Decomposition of 1,3,5-Triamino-2,4,6-trinitrobenzene Nanoparticles According to the ReaxFF Molecular Dynamics Method

机译:根据reaxff分子动力学方法,对1,3,5-三氨基-2,4,6-三硝基苯纳米颗粒的热分解的原子见解

获取原文
获取原文并翻译 | 示例

摘要

As a widely used wood explosive,1,3,5-triamino-2,4,6-trinitrobenzene(TATB)and its nanoparticles are insensitive due to the graphene-like structure.In this paper,the decomposition processes of TATB and its nanospheres with different radius(30,40,50,60,and 70 A)at 2000 K and 3000 K are calculated by the reactive molecular dynamic simulations.The initial reactions and the evolution of clusters(whose molecular weight is larger than TATB)are analyzed.The results show that there are four major distinctive channels for the initial decomposition of 30 A nano-TATB system:(1)the formation of HO fragment;(2)the C-NO2 bond breaking to form NO2;(3)conversion of nitro to nitroso;(4)hydrogen transfer.For the main production gases,the amount of CO2,N2 and H2O will increase with the increase of temperature and the amount of H2O at 3000 K is obviously more than that at 2000 K accordingly to conventional TATB.This demonstrates that high temperature is beneficial to the pyrolysis of conventional TATB.In contrast to the results of TATB,the total amount of gas molecules of nanoparticles decreases,indicating that high temperature is not conducive to the pyrolysis reaction of nano-TATB.The results shed light on the complicated interplay between morphological evolution and external conditions.It provides insights into the thermal decomposition mechanism of TATB and its nanoparticles at the atomic level.
机译:作为一种广泛使用的木材爆炸物,1,3,5-三氨基-2,4,6-三硝基苯(TATB)及其纳米颗粒由于类似石墨烯的结构而对纳米颗粒不敏感。在本文中,TATB及其纳米圈的分解过程通过反应性分子动力学模拟计算出不同半径(30,40,50,60和70 a),在2000 K和3000 K时进行计算。分析簇的初始反应和簇的演化(其分子量大于TATB)结果表明,有四个主要的独特通道可以用于30 A纳米-TATB系统的初始分解:(1)HO片段的形成;(2)C-NO2键断裂以形成NO2;(3)转化的转换;(3)硝基到硝基;(4)氢转移。对于主要生产气体,二氧化碳,N2和H2O的量随温度的升高而增加,而在3000 K时的H2O量显然大于相应的2000 k,而对于常规k tatb。这表明高温有利于常规tatb.in C的热解。对TATB的结果的影响,纳米颗粒的气体分子的总量减少,表明高温不利于纳米-TATB的热解反应。结果揭示了形态演化和外部条件之间复杂相互作用的启示。对TATB及其纳米颗粒在原子水平上的热分解机制的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号