...
首页> 外文期刊>Journal of geophysical research. Planets >Modeling the thermal and physical evolution of Mount Sharp's sedimentary rocks, Gale Crater, Mars: Implications for diagenesis on the MSL Curiosity rover traverse
【24h】

Modeling the thermal and physical evolution of Mount Sharp's sedimentary rocks, Gale Crater, Mars: Implications for diagenesis on the MSL Curiosity rover traverse

机译:建模夏普山的沉积岩石,大风火星的热和物理演化:对MSL好奇心漫游者遍历成分的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Gale Crater, the Mars Science Laboratory (MSL) landing site, contains a centralmound, named Aeolis Mons (informally Mount Sharp) that preserves 5 km of sedimentary stratigraphy. Formation scenarios include (1) complete filling of Gale Crater followed by partial sediment removal or (2) building of a central deposit with morphology controlled by slope winds and only incomplete sedimentary fill. Here we model temperature-time paths for both scenarios, compare results with analyses provided by MSL Curiosity, and provide scenario-dependent predictions of temperatures of diagenesis along Curiosity's future traverse. The effects of variable sediment thermal conductivity and historical heat flows are also discussed. Modeled erosion and deposition rates are 5–37 μm/yr, consistent with previously published estimates from other Mars locations. The occurrence and spatial patterns of diagenesis depend on sedimentation scenario and surface paleotemperature. For (1) temperatures experienced by sediments decrease monotonically along the traverse and up Mount Sharp stratigraphy, whereas for (2) temperatures increase along the traverse reaching maximum temperatures higher up in Mount Sharp's lower units. If early Mars surface temperatures were similar to modern Mars (mean: ~50°C), only select locations under select scenarios permit diagenetic fluids. In contrast, if early Mars surface temperatures averaged 0°C or brines had lowered freezing points, diagenesis is predicted in most locations with temperatures <225°C. Comparing our predictions with future MSL results on diagenetic textures, secondary mineral assemblages, and their spatial variability will constrain past heat flow, Mount Sharp's formation processes, the availability of liquid water on early Mars, and sediment organic preservation potential.
机译:火星科学实验室(MSL)着陆点的Gale Crater包含一个中央山,名为Aeolis Mons(非正式的夏普山),可保留5公里的沉积地层学。编队场景包括(1)完全填充大风火山口,然后彻底清除部分沉积物或(2)用斜坡风控制的形态和仅不完整的沉积物填充的中心沉积物。在这里,我们对两种情况进行了温度时间路径的建模,将结果与MSL好奇心提供的分析进行了比较,并提供了依赖场景的预测,沿好奇心的未来遍历,对成岩作用的温度进行了预测。还讨论了可变沉积物导热率和历史热流的影响。建模的侵蚀和沉积速率为5-37μm/yr,与其他火星位置的先前发表的估计一致。成岩作用的发生和空间模式取决于沉积场景和表面古应化。对于(1)沉积物所经历的温度沿着尖锐的尖锐地层和上向上单调降低,而对于(2),沿着遍历的温度升高,达到夏普山的下部单元的最高温度较高。如果火星早期的表面温度与现代火星相似(平均值:〜50°C),则仅在精选场景下进行选择的位置允许成岩液。相反,如果火星早期的表面温度平均为0°C或盐水降低了冰点,则大多数温度<225°C的位置都会预测成岩作用。将我们的预测与未来的MSL结果进行比较,对成岩纹理,二次矿物组合及其空间变异性进行比较,将限制过去的热流,夏普山的形成过程,早期火星上的液态水以及沉积物有机保存潜力。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号