...
首页> 外文期刊>Journal of geophysical research. Planets >The structure of terrestrial bodies: Impact heating, corotation limits, and synestias
【24h】

The structure of terrestrial bodies: Impact heating, corotation limits, and synestias

机译:陆生的结构:冲击加热,旋律限制和合成

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

During accretion, terrestrial bodies attain a wide range of thermal and rotational states, which are accompanied by significant changes in physical structure (size, shape, pressure and temperature profile, etc.). However, variations in structure have been neglected in most studies of rocky planet formation and evolution. Here we present a new code, the Highly Eccentric Rotating Concentric U (potential) Layers Equilibrium Structure (HERCULES) code, that solves for the equilibrium structure of planets as a series of overlapping constant-density spheroids. Using HERCULES and a smoothed particle hydrodynamics code, we show that Earth-like bodies display a dramatic range of morphologies. For any rotating planetary body, there is a thermal limit beyond which the rotational velocity at the equator intersects the Keplerian orbital velocity. Beyond this corotation limit (CoRoL), a hot planetary body forms a structure, which we name a synestia, with a corotating inner region connected to a disk-like outer region. By analyzing calculations of giant impacts and models of planet formation, we show that typical rocky planets are substantially vaporized multiple times during accretion. For the expected angular momentum of growing planets, a large fraction of post-impact bodies will exceed the CoRoL and form synestias. The common occurrence of hot, rotating states during accretion has major implications for planet formation and the properties of the final planets. In particular, the structure of post-impact bodies influences the physical processes that control accretion, core formation, and internal evolution. Synestias also lead to new mechanisms for satellite formation. Finally, the wide variety of possible structures for terrestrial bodies also expands the mass-radius range for rocky exoplanets. Plain Language Summary During the end stage of planet formation, planets collide together and produce bodies that are partially vaporized and rapidly rotating. In this work, we developed new techniques to calculate the shape and internal pressures of hot, rotating, Earth-like planets. We find that rocky planets can have a variety of shapes and sizes. In addition, for certain combinations of thermal energy and rotation rate, a planet cannot rotate as if it were a solid body. Beyond this corotation limit, the planet has an inner region that is rotating at a single rate connected to a disk-like outer region with orbital velocities. The dynamics of this extended structure are significantly different than a normal planet, so we gave the extended structure a name: a synestia. We show that rocky planets are vaporized multiple times during their formation and are likely to form synestias. The different structures of hot, rotating planets change our understanding of multiple aspects of planet formation, including the origin of our Moon.
机译:在积聚期间,陆地物体达到了广泛的热和旋转状态,伴随着物理结构(尺寸,形状,压力和温度剖面等)的显着变化。但是,在大多数岩石行星形成和进化的研究中,结构的变化已被忽略。在这里,我们提出了一个新的代码,即高度偏心的同心u(电势)层平衡结构(Hercules)代码,该代码求解行星的平衡结构作为一系列重叠的恒定密度球体。使用大力神和平滑的颗粒流体动力代码,我们表明类似地球的身体显示出巨大的形态范围。对于任何旋转的行星主体,都有一个热极限,超出了赤道的旋转速度与开普勒轨道速度相交。除了这种旋转极限(旋转)之外,一个热行星体形成了一种结构,我们将其命名为合成,并具有连接的内部区域连接到磁盘状的外部区域。通过分析巨型影响和行星形成模型的计算,我们表明典型的岩石行星在积聚过程中大量蒸发了多次。对于生长行星的预期角动量,大量的影响后体将超过旋转和形成合成体。在积聚过程中,热,旋转状态的常见发生对行星形成和最终行星的特性具有重大影响。特别是,影响后身体的结构会影响控制积聚,核心形成和内部进化的物理过程。合成还导致了卫星形成的新机制。最后,陆生物的各种可能的结构也扩大了岩石系外行星的质量 - 拉迪乌斯范围。在行星形成的末期,普通语言摘要,行星碰撞并产生部分蒸发且迅速旋转的物体。在这项工作中,我们开发了新技术来计算热,旋转,类似地球的行星的形状和内部压力。我们发现岩石行星可以具有多种形状和尺寸。另外,对于热能和旋转速率的某些组合,行星不能旋转,好像它是固体。除了该旋转极限之外,行星的内部区域以单个速率旋转,该速率连接到具有轨道速度的磁盘样外部区域。这种扩展结构的动力学与正常行星显着不同,因此我们给扩展结构一个名称:综合。我们表明,岩石行星在形成过程中多次蒸发,并且很可能形成合成。热,旋转行星的不同结构改变了我们对行星形成多个方面的理解,包括月球的起源。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号