...
首页> 外文期刊>Journal of geophysical research. Planets >Pluto's Beating Heart Regulates the Atmospheric Circulation: Results FromHigh-Resolution and Multiyear Numerical Climate Simulations
【24h】

Pluto's Beating Heart Regulates the Atmospheric Circulation: Results FromHigh-Resolution and Multiyear Numerical Climate Simulations

机译:冥王星的跳动心脏调节大气循环:高分辨率和多年数值气候模拟的结果

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Pluto's atmosphere is mainly nitrogen and is in solid-gas equilibrium with the surface nitrogen ice. As a result, the global nitrogen ice distribution and the induced nitrogen condensation-sublimation flows strongly control the atmospheric circulation. It is therefore essential for Global Climate Models to accurately account for the global nitrogen ice distribution in order to realistically simulate Pluto's atmosphere. Here we present a set of new numerical simulations of Pluto's atmosphere in 2015 performed with a Global Climate Model using a 50-km horizontal resolution (3.75° × 2.5°) and taking into account the latest topography and ice distribution data, as observed by the New Horizons spacecraft. In order to analyze the seasonal evolution of Pluto's atmosphere dynamics, we also performed simulations at coarser resolution (11.25° × 7.5°) but covering three Pluto years. The model predicts a near-surface western boundary current inside the Sputnik Planitia basin in 2015, which is consistent with the dark wind streaks observed in this region.We find that this atmospheric current could explain the differences in ice composition and color observed in the northwestern regions of Sputnik Planitia, by significantly impacting the nitrogen ice sublimation rate in these regions through processes possibly involving conductive heat flux from the atmosphere, transport of dark materials by the winds, and surface albedo positive feedbacks. In addition, we find that this current controls Pluto's general atmospheric circulation, which is dominated by a retrorotation, independently of the nitrogen ice distribution outside Sputnik Planitia. This exotic circulation regime could explain many of the geological features and longitudinal asymmetries in ice distribution observed all over Pluto's surface.
机译:冥王星的大气主要是氮,并且与表面氮冰平衡。结果,全球氮冰的分布和诱导的氮凝结 - 呈现强烈控制大气循环。因此,对于全球气候模型来说,准确说明全球氮冰的分布至关重要,以便实际模拟冥王星的大气。在这里,我们在2015年介绍了一组新的冥王星大气模拟,该模拟使用50公里的水平分辨率(3.75°×2.5°)通过全球气候模型进行,并考虑到最新的地形和冰分布数据,如该模型所观察到的,如新的视野航天器。为了分析冥王星大气动力学的季节性演变,我们还以更粗的分辨率(11.25°×7.5°)进行了模拟,但覆盖了三年的冥王星年。该模型预测了2015年的痰液planitia盆地内部的近表面西部边界电流,该电流与该地区观察到的深风条纹一致。我们发现,这种大气电流可以解释西北地区在西北地区观察到的冰组成和色彩的差异。施普尼克策划区的区域通过可能涉及大气中的导电热通量,通过风将深色材料运输以及表面反照率的阳性反馈来显着影响这些区域的氮冰升华率。此外,我们发现该电流控制着冥王星的一般大气循环,该循环由反旋转的主导,独立于Sputnik Planitia以外的氮冰分布。这种异国情调的循环系统可以解释许多地质特征和在冥王星表面上观察到的冰分布中的许多地质特征和纵向不对称。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号