...
首页> 外文期刊>Journal of geophysical research. Planets >Compaction and Melt Transport in Ammonia-Rich Ice Shells: Implications for the Evolution of Triton
【24h】

Compaction and Melt Transport in Ammonia-Rich Ice Shells: Implications for the Evolution of Triton

机译:富含氨的冰壳中的压实和熔体传输:特里顿的演变的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Ammonia, if present in the ice shells of icy satellites, could lower the temperature for the onset of melting to 176 K and create a large temperature range where partial melt is thermally stable. The evolution of regions of ammonia-rich partial melt could strongly influence the geological and thermal evolution of icy bodies. For melt to be extracted from partially molten regions, the surrounding solid matrix must deform and compact. Whether ammonia-rich melts sink to the subsurface ocean or become frozen into the ice shell depends on the compaction rate and thermal evolution. Here we construct a model for the compaction and thermal evolution of a partially molten, ammonia-rich ice shell in a one-dimensional geometry. We model the thickening of an initially thin ice shell above an ocean with 10% ammonia. We find that ammonia-rich melts can freeze into the upper 5 to 10 km of the ice shell, when ice shell thickening is rapid compared to the compaction rate. The trapping of near-surface volatiles suggests that, upon reheating of the ice shell, eutectic melting events are possible. However, as the ice shell thickening rate decreases, ammonia-rich melt is efficiently excluded from the ice shell and the bulk of the ice shell is pure water ice. We apply our results to the thermal evolution of Neptune's moon Triton. As Triton's ice shell thickens, the gradual increase of ammonia concentration in Triton's subsurface ocean helps to prevent freezing and increases the predicted final ocean thickness by up to 50 km.
机译:如果存在于冰冷卫星的冰壳中,则可以降低融化发作至176 K的温度,并在部分熔体的热稳定中产生较大的温度范围。富含氨的部分熔体区域的进化可以强烈影响冰冷体的地质和热演化。为了从部分熔融区域提取熔体,周围的固体基质必须变形并紧凑。富含氨的融化是否沉入地下海洋还是冷冻到冰壳中取决于压实速率和热进化。在这里,我们构建了一个模型,用于一维几何形状中部分熔融富含氨的冰壳的压实和热演化。我们对海洋上方的最初薄冰壳的增厚进行建模,并具有10%的氨。我们发现,与压实速率相比,冰壳增厚迅速时,富含氨的融化可以冻结到冰壳的上部5至10 km。近地面挥发物的捕获表明,在重新加热冰壳后,可以实现共晶融化事件。但是,随着冰壳增厚速率的降低,富含氨的熔体被有效地排除在冰壳中,并且大部分冰壳是纯净的水冰。我们将结果应用于海王星的月亮特里顿的热演化。随着特里顿的冰壳变稠,特里顿地下海洋中氨浓度的逐渐增加有助于防止冰冻,并使预测的最终海洋厚度最大增加50公里。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号