...
首页> 外文期刊>The journal of physical chemistry, A. Molecules, spectroscopy, kinetics, environment, & general theory >Predicted Reaction Mechanisms, Product Speciation, Kinetics, and Detonation Properties of the Insensitive Explosive 2,6-Diamino-3,5-dinitropyrazine-1-oxide (LLM-105)
【24h】

Predicted Reaction Mechanisms, Product Speciation, Kinetics, and Detonation Properties of the Insensitive Explosive 2,6-Diamino-3,5-dinitropyrazine-1-oxide (LLM-105)

机译:预测的反应机制,产品形态,动力学和不敏感炸药2,6-偶二氨基-3,5-二硝基吡嗪-1-氧化物(LLM-105)的爆轰性能

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

2,6-Diamino-3,5-dinitropyrazine-1-oxide (LLM-105) is a relatively new and promising insensitive high-explosive (IHE) material that remains only partially characterized. IHEs are of interest for a range of applications and from a fundamental science standpoint, as the root causes behind insensitivity are poorly understood. We adopt a multitheory approach based on reactive molecular dynamic simulations performed with density functional theory, density functional tight-binding, and reactive force fields to characterize the reaction pathways, product speciation, reaction kinetics, and detonation performance of LLM-105. We compare and contrast these predictions to 1,3,5-triamino-2,4,6-trinitrobenzene (TATB), a prototypical IHE, and 1,3,5,7-tetranitro-1,3,5,7-tetrazoctane (HMX), a more sensitive and higher performance material. The combination of different predictive models allows access to processes operative on progressively longer timescales while providing benchmarks for assessing uncertainties in the predictions. We find that the early reaction pathways of LLM-105 decomposition are extremely similar to TATB; they involve intra- and intermolecular hydrogen transfer. Additionally, the detonation performance of LLM-105 falls between that of TATB and HMX. We find agreement between predictive models for first- step reaction pathways but significant differences in final product formations. Predictions of detonation performance result in a wide range of values, and one-step kinetic parameters show the similar reaction rates at high temperatures for three out of four models considered.
机译:2,6-二氨基-3,5-二硝基吡嗪-1-氧化物(LLM-105)是一种相对较新且很有前途的钝感高爆药(IHE)材料,目前仅对其进行了部分表征。从基础科学的角度来看,IHE具有广泛的应用价值,因为人们对不敏感背后的根本原因知之甚少。我们采用基于密度泛函理论、密度泛函紧束缚和反应力场的反应分子动力学模拟的多理论方法来表征LLM-105的反应路径、产物形态、反应动力学和爆轰性能。我们将这些预测与典型的IHE材料1,3,5-三氨基-2,4,6-三硝基苯(TATB)和更敏感、性能更高的材料1,3,5,7-四硝基-1,3,5,7-四唑辛烷(HMX)进行了比较和对比。不同预测模型的组合允许访问在逐渐延长的时间尺度上运行的过程,同时为评估预测中的不确定性提供基准。我们发现LLM-105分解的早期反应途径与TATB极为相似;它们涉及分子内和分子间的氢转移。此外,LLM-105的爆轰性能介于TATB和HMX之间。我们发现,第一步反应途径的预测模型之间存在一致性,但最终产物的形成存在显著差异。爆轰性能的预测结果有很大范围的数值,一步动力学参数显示,四分之三的模型在高温下的反应速率相似。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号