首页> 外文期刊>The Journal of Chemical Physics >Model protein excited states: MRCI calculations with large active spaces vs CC2 method
【24h】

Model protein excited states: MRCI calculations with large active spaces vs CC2 method

机译:模型蛋白激发状态:MRCI计算具有大型有源空间VS CC2方法

获取原文
获取原文并翻译 | 示例
           

摘要

Benchmarking calculations on excited states of models of phenylalanine protein chains are presented to assess the ability of alternative methods to the standard and most commonly used multiconfigurational wave function-based method, the complete active space self-consistent field (CASSCF), in recovering the non-dynamical correlation for systems that become not affordable by the CASSCF. The exploration of larger active spaces beyond the CASSCF limit is benchmarked through three strategies based on the reduction in the number of determinants: the restricted active space self-consistent field, the generalized active space self-consistent field (GASSCF), and the occupation-restricted multiple active space (ORMAS) schemes. The remaining dynamic correlation effects are then added by the complete active space second-order perturbation theory and by the multireference difference dedicated configuration interaction methods. In parallel, the approximate second-order coupled cluster (CC2), already proven to be successful for small building blocks of model proteins in one of our previous works [Ben Amor et al., J. Chem. Phys. 148, 184105 (2018)], is investigated to assess its performances for larger systems. Among the different alternative strategies to CASSCF, our results highlight the greatest efficiency of the GASSCF and ORMAS schemes in the systematic reduction of the configuration interaction expansion without loss of accuracy in both nature and excitation energies of both singlet pi pi (*) and n pi (*)(CO) excited states with respect to the equivalent CASSCF calculations. Guidelines for an optimum applicability of this scheme to systems requiring active spaces beyond the complete active space limit are then proposed. Finally, the extension of the CC2 method to such large systems without loss of accuracy is demonstrated, highlighting the great potential of this method to treat accurately excited states, mainly single reference, of very large systems.
机译:本文对苯丙氨酸蛋白质链模型的激发态进行了基准计算,以评估标准和最常用的基于多组态波函数的方法——完全主动空间自洽场(CASSCF)的替代方法在恢复CASSCF负担不起的系统的非动力学相关性方面的能力。基于行列式数量的减少,通过三种策略对超出CASSCF限制的更大活动空间的探索进行基准测试:受限活动空间自洽场、广义活动空间自洽场(GASSCF)和占用受限多活动空间(ORMAS)方案。剩余的动态相关效应由完整的活动空间二阶微扰理论和多参考差分组态相互作用方法进行叠加。同时,对我们之前的一项工作[Ben Amor et al.,J.Chem.Phys.148,184105(2018)]中已经证明对模型蛋白质的小构建块成功的近似二阶耦合簇(CC2)进行了研究,以评估其在更大系统中的性能。在CASSCF的不同替代策略中,我们的结果强调了GASSCF和ORMAS方案在系统减少组态相互作用扩展方面的最大效率,而不会损失与等效CASSCF计算相关的单线态pi(*)和n pi(*)(共)激发态的性质和激发能的准确性。然后,提出了该方案对需要超过完整活动空间限制的活动空间的系统的最佳适用性准则。最后,我们展示了CC2方法在不损失精度的情况下扩展到如此大的系统,突出了这种方法在精确处理非常大系统的激发态(主要是单参考态)方面的巨大潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号