...
首页> 外文期刊>Physics in medicine and biology. >A comparison of Monte Carlo dropout and bootstrap aggregation on the performance and uncertainty estimation in radiation therapy dose prediction with deep learning neural networks
【24h】

A comparison of Monte Carlo dropout and bootstrap aggregation on the performance and uncertainty estimation in radiation therapy dose prediction with deep learning neural networks

机译:蒙特卡罗辍学与自举折射对深度学习神经网络放射治疗剂量预测性能和不确定性估计的比较

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Recently, artificial intelligence technologies and algorithms have become a major focus for advancements in treatment planning for radiation therapy. As these are starting to become incorporated into the clinical workflow, a major concern from clinicians is not whether the model is accurate, but whether the model can express to a human operator when it does not know if its answer is correct. We propose to use Monte Carlo Dropout (MCDO) and the bootstrap aggregation (bagging) technique on deep learning (DL) models to produce uncertainty estimations for radiation therapy dose prediction. We show that both models are capable of generating a reasonable uncertainty map, and, with our proposed scaling technique, creating interpretable uncertainties and bounds on the prediction and any relevant metrics. Performance-wise, bagging provides statistically significant reduced loss value and errors in most of the metrics investigated in this study. The addition of bagging was able to further reduce errors by another 0.34% for Dmean and 0.19% for Dmax, on average, when compared to the baseline model. Overall, the bagging framework provided significantly lower mean absolute error (MAE) of 2.62, as opposed to the baseline model’s MAE of 2.87. The usefulness of bagging, from solely a performance standpoint, does highly depend on the problem and the acceptable predictive error, and its high upfront computational cost during training should be factored in to deciding whether it is advantageous to use it. In terms of deployment with uncertainty estimations turned on, both methods offer the same performance time of about 12 s. As an ensemble-based metaheuristic, bagging can be used with existing machine learning architectures to improve stability and performance, and MCDO can be applied to any DL models that have dropout as part of their architecture.
机译:近年来,人工智能技术和算法已成为放射治疗计划进展的主要焦点。随着这些信息开始融入临床工作流程,临床医生的主要关注点不是模型是否准确,而是模型是否能在不知道其答案是否正确的情况下向人类操作员表达。我们建议在深度学习(DL)模型上使用蒙特卡罗辍学(MCDO)和自举聚合(bagging)技术来产生辐射治疗剂量预测的不确定性估计。我们证明了这两个模型都能够生成一个合理的不确定性图,并且,通过我们提出的缩放技术,在预测和任何相关度量上创建可解释的不确定性和边界。就性能而言,在本研究调查的大多数指标中,装袋在统计学上显著降低了损失值和误差。与基线模型相比,添加装袋能够进一步将Dmean和Dmax的误差分别平均减少0.34%和0.19%。总体而言,与基线模型的平均绝对误差(MAE)2.87相比,bagging框架的平均绝对误差(MAE)显著降低,为2.62。仅从性能的角度来看,打包的有用性在很大程度上取决于问题和可接受的预测误差,在决定使用它是否有利时,应考虑到训练期间其高昂的前期计算成本。就启用不确定性估计的部署而言,这两种方法提供的性能时间相同,约为12秒。作为基于集成的元启发式,bagging可用于现有的机器学习体系结构,以提高稳定性和性能,MCDO可应用于任何作为体系结构一部分而退出的DL模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号