...
首页> 外文期刊>Langmuir: The ACS Journal of Surfaces and Colloids >Molecular Dynamics Study on CO2 Storage in Water-Filled Kerogen Nanopores in Shale Reservoirs: Effects of Kerogen Maturity and Pore Size
【24h】

Molecular Dynamics Study on CO2 Storage in Water-Filled Kerogen Nanopores in Shale Reservoirs: Effects of Kerogen Maturity and Pore Size

机译:页岩储层水填充后纳米孔中CO2贮藏的分子动力学研究:Kerogen成熟度和孔径的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

CO2 sequestration in shale reservoirs is an economically viable option to alleviate carbon emission. Kerogen, a major component in the organic matter in shale, is associated with a large number of nanopores, which might be filled with water. However, the CO(2 )storage mechanism and capacity in water-filled kerogen nanopores are poorly understood. Therefore, in this work, we use molecular dynamics simulation to study the effects of kerogen maturity and pore size on CO2 storage mechanism and capacity in water-filled kerogen nanopores. Type II kerogen with different degrees of maturity (II-A, II-B, II-C, and II-D) is chosen, and three pore sizes (1, 2, and 4 nm) are designed. The results show that CO2 storage mechanisms are different in the 1 nm pore and the larger ones. In 1 nm kerogen pores, water is completely displaced by CO2 due to the strong interactions between kerogen and CO2 as well as among CO2. CO2 storage capacity in 1 nm pores can be up to 1.5 times its bulk phase in a given volume. On the other hand, in 2 and 4 nm pores, while CO2 is dissolved in the middle of the pore (away from the kerogen surface), in the vicinity of the kerogen surface, CO2 can form nano-sized clusters. These CO2 clusters would enhance the overall CO2 storage capacity in the nanopores, while the enhancement becomes less significant as pore size increases. Kerogen maturity has minor influences on CO2 storage capacity. Type II-A (immature) kerogen has the lowest storage capacity because of its high heteroatom surface density, which can form hydrogen bonds with water and reduce the available CO2 storage space. The other three kerogens are comparable in terms of CO2 storage capacity. This work should shed some light on CO2 storage evaluation in shale reservoirs.
机译:页岩储层中的二氧化碳封存是缓解碳排放的一种经济可行的选择。干酪根是页岩中有机质的主要成分,与大量纳米孔有关,这些纳米孔可能充满水。然而,对充水干酪根纳米孔中CO(2)的储存机理和容量知之甚少。因此,在这项工作中,我们利用分子动力学模拟研究了干酪根成熟度和孔径对充水干酪根纳米孔中CO2储存机制和容量的影响。选择具有不同成熟度(II-A、II-B、II-C和II-D)的II型干酪根,并设计了三种孔径(1、2和4nm)。结果表明,1nm孔隙和较大孔隙的CO2储存机制不同。在1nm的干酪根孔隙中,由于干酪根和CO2以及CO2之间的强烈相互作用,水被CO2完全置换。在给定体积下,1nm孔隙中的CO2存储容量可达其本体相的1.5倍。另一方面,在2和4 nm的孔中,当CO2溶解在孔的中间(远离干酪根表面)时,在干酪根表面附近,CO2可以形成纳米尺寸的团簇。这些CO2团簇将增强纳米孔中的总体CO2存储容量,而随着孔径的增大,这种增强变得不那么显著。干酪根成熟度对CO2储存能力影响较小。II-A型(未成熟)干酪根因其高杂原子表面密度而具有最低的储存容量,杂原子表面密度可与水形成氢键,并减少可用的CO2储存空间。其他三种干酪根在CO2储存能力方面具有可比性。这项工作将对页岩储层中的CO2储量评估有所帮助。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号