首页> 外文期刊>Nanotechnology >Magnetite nanoparticle anchored graphene cathode enhances microbial electrosynthesis of polyhydroxybutyrate by Rhodopseudomonas palustris TIE-1
【24h】

Magnetite nanoparticle anchored graphene cathode enhances microbial electrosynthesis of polyhydroxybutyrate by Rhodopseudomonas palustris TIE-1

机译:磁铁矿纳米粒子锚定石墨烯阴极增强了Rhodopseudomonas Palustris Tie-1的多羟基巴丁酸酯的微生物电气合成

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Microbial electrosynthesis (MES) is an emerging technology that can convert carbon dioxide (CO2) into value-added organic carbon compounds using electrons supplied from a cathode. However, MES is affected by low product formation due to limited extracellular electron uptake by microbes. Herein, a novel cathode was developed from chemically synthesized magnetite nanoparticles and reduced graphene oxide nanocomposite (rGO-MNPs). This nanocomposite was electrochemically deposited on carbon felt (CF/rGO-MNPs), and the modified material was used as a cathode for MES production. The bioplastic, polyhydroxybutyrate (PHB) produced by Rhodopseudomonas palustris TIE-1 (TIE-1), was measured from reactors with modified and unmodified cathodes. Results demonstrate that the magnetite nanoparticle anchored graphene cathode (CF/rGO-MNPs) exhibited higher PHB production (91.31 0.9 mg l(-1)). This is similar to 4.2 times higher than unmodified carbon felt (CF), and 20 times higher than previously reported using graphite. This modified cathode enhanced electron uptake to -11.7 0.1 mu A cm(-2), similar to 5 times higher than CF cathode (-2.3 0.08 mu A cm(-2)). The faradaic efficiency of the modified cathode was similar to 2 times higher than the unmodified cathode. Electrochemical analysis and scanning electron microscopy suggest that rGO-MNPs facilitated electron uptake and improved PHB production by TIE-1. Overall, the nanocomposite (rGO-MNPs) cathode modification enhances MES efficiency.
机译:微生物电合成(MES)是一项新兴技术,可以利用阴极提供的电子将二氧化碳(CO2)转化为增值有机碳化合物。然而,由于微生物对细胞外电子的吸收有限,MES受到低产物形成的影响。在此,我们利用化学合成的磁铁矿纳米颗粒和还原氧化石墨烯纳米复合材料(rGO MNPs)开发了一种新型阴极。将该纳米复合材料电化学沉积在碳毡(CF/rGO MNPs)上,并将改性材料用作MES生产的阴极。生物塑料聚羟基丁酸酯(PHB)是由沼泽红假单胞菌TIE-1(TIE-1)生产的,它是在带有改性和未改性阴极的反应器中测量的。结果表明,磁铁矿纳米颗粒锚定石墨烯阴极(CF/rGO MNPs)具有较高的PHB产量(91.31 0.9 mg l(-1))。这类似于未改性碳毡(CF)的4.2倍,比之前报道的使用石墨的碳毡高20倍。这种改进的阴极将电子吸收提高到-11.7 0.1μA cm(-2),类似于CF阴极(-2.3 0.08μA cm(-2))的5倍。改性阴极的法拉第效率是未改性阴极的2倍。电化学分析和扫描电子显微镜表明,rGO MNPs促进了TIE-1的电子吸收和PHB生成。总的来说,纳米复合材料(rGO MNPs)阴极改性提高了MES效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号