...
首页> 外文期刊>Applied thermal engineering: Design, processes, equipment, economics >Melting process of the nano-enhanced phase change material (NePCM) in an optimized design of shell and tube thermal energy storage (TES): Taguchi optimization approach
【24h】

Melting process of the nano-enhanced phase change material (NePCM) in an optimized design of shell and tube thermal energy storage (TES): Taguchi optimization approach

机译:纳米增强相变材料(NEPCM)的熔化过程在壳体热能储存(TES)的优化设计中:TAGUCHI优化方法

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The thermal performance and response time of Thermal Energy Storage (TES) units are mainly limited by the enclosure design and the low thermal conductivity of the storage medium. In the present study, the performance of petal-shape pipes in a shell and tube TES unit was numerically modeled and analyzed. The integration of the finite element method, a mesh adaptation approach, and an adaptive time-step scheme, was used to robustly simulate the phase change process and energy storage in the TES unit. The enclosure was considered fixed both dimensionally and by volume, which acts as a design constraint. The impacts of using two types of nano-additives, Cu and GO nanoparticles, and the geometrical aspects of the petal pipe on the thermal behavior of the TES unit were investigated. To find the optimal design of the TES unit with the maximum thermal energy power, the Taguchi optimization method was employed and a sensitivity analysis was performed. The copper nano-additives showed a better performance than the graphene oxide nano-additives. Although the surface area of the petal-pipe was fixed, its geometric shape was the most important parameter for maximizing the energy storage power of the TES unit. The optimum design could improve the amount of storage energy by 23.3% (Cu) and 22.5% (GO) NePCM compared to average designs. Based on an ANOVA analysis, the amplitude of petal shape could influence the total energy storage with a contribution ratio of about 41%, while the nanoparticles' contribution was 5-6%. An optimal design of a petal tube and Cu nanoparticles could improve the heat transfer by 45% compared to a circular tube with no nanoparticles.
机译:热储能(TES)单元的热性能和响应时间主要受外壳设计和存储介质的低导热性限制。在本研究中,对管壳式TES装置中花瓣形管道的性能进行了数值模拟和分析。采用有限元法、网格自适应法和自适应时间步长法相结合的方法,对TES单元的相变过程和储能进行了稳健的模拟。封闭空间在尺寸和体积上都被视为固定的,这是一个设计约束。研究了使用两种类型的纳米添加剂,Cu和GO纳米颗粒,以及花瓣管的几何特性对TES单元热行为的影响。为了找到具有最大热能功率的TES装置的优化设计,采用田口优化方法,并进行了灵敏度分析。铜纳米添加剂的性能优于氧化石墨烯纳米添加剂。虽然花瓣管的表面积是固定的,但它的几何形状是最大化TES单元储能功率的最重要参数。与平均设计相比,优化设计可将储能量提高23.3%(Cu)和22.5%(GO)NePCM。基于方差分析,花瓣形状的振幅会影响总储能,其贡献率约为41%,而纳米颗粒的贡献率为5-6%。与不含纳米颗粒的圆管相比,花瓣管和铜纳米颗粒的优化设计可以将传热提高45%。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号