首页> 外文期刊>ACS applied materials & interfaces >Synergistic Photodynamic and Photothermal Antibacterial Activity of In Situ Grown Bacterial Cellulose/MoS2-Chitosan Nanocomposite Materials with Visible Light Illumination
【24h】

Synergistic Photodynamic and Photothermal Antibacterial Activity of In Situ Grown Bacterial Cellulose/MoS2-Chitosan Nanocomposite Materials with Visible Light Illumination

机译:具有可见光照明的原位生长细菌纤维素/ MOS2-壳聚糖纳米复合材料的协同光动力学和光热抗菌活性

获取原文
获取原文并翻译 | 示例
           

摘要

Owing to the rise in prevalence of multidrug-resistant pathogens attributed to the overuse of antibiotics, infectious diseases caused by the transmission of microbes from contaminated surfaces to new hosts are an ever-increasing threat to public health. Thus, novel materials that can stem this crisis, while also functioning via multiple antimicrobial mechanisms so that pathogens are unable to develop resistance to them, are in urgent need. Toward this goal, in this work, we developed in situ grown bacterial cellulose/MoS_(2)-chitosan nanocomposite materials (termed BC/MoS_(2)-CS) that utilize synergistic membrane disruption and photodynamic and photothermal antibacterial activities to achieve more efficient bactericidal activity. The BC/MoS_(2)-CS nanocomposite exhibited excellent antibacterial efficacy, achieving 99.998% (4.7 log units) and 99.988% (3.9 log units) photoinactivation of Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus , respectively, under visible-light illumination (xenon lamp, 500 W, λ ≥ 420 nm, and 30 min). Mechanistic studies revealed that the use of cationic chitosan likely facilitated bacterial membrane disruption and/or permeability, with hyperthermia (photothermal) and reactive oxygen species (photodynamic) leading to synergistic pathogen inactivation upon visible-light illumination. No mammalian cell cytotoxicity was observed for the BC/MoS_(2)-CS membrane, suggesting that such composite nanomaterials are attractive as functional materials for infection control applications.
机译:由于过度使用抗生素导致多药耐药病原体的流行率上升,由微生物从污染表面传播到新宿主而引起的传染病对公共卫生的威胁日益增加。因此,迫切需要能够阻止这场危机的新型材料,同时也能通过多种抗菌机制发挥作用,使病原体无法对其产生耐药性。为了实现这一目标,在这项工作中,我们开发了原位生长的细菌纤维素/MoS_2)-壳聚糖纳米复合材料(称为BC/MoS_2)-CS),该材料利用协同膜破坏以及光动力和光热抗菌活性来实现更有效的杀菌活性。BC/MoS_2)-CS纳米复合材料在可见光照射下(氙灯,500w,λ)对革兰氏阴性大肠杆菌和革兰氏阳性金黄色葡萄球菌的光灭活率分别为99.998%(4.7log单位)和99.988%(3.9log单位),表现出优异的抗菌效果≥ 420纳米,30分钟)。机理研究表明,阳离子壳聚糖的使用可能促进细菌膜的破坏和/或通透性,高温(光热)和活性氧物种(光动力)导致可见光照射下的协同致病菌灭活。未观察到BC/MoS_2)-CS膜对哺乳动物细胞的细胞毒性,表明这种复合纳米材料作为功能材料在感染控制应用中具有吸引力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号